What Does $$E^2_k|_{k=k_{res}}$$ Mean?

  • Thread starter Thread starter NODARman
  • Start date Start date
  • Tags Tags
    Physic Symbol
NODARman
Messages
57
Reaction score
13
Homework Statement
.
Relevant Equations
.
Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
Just the k=k(res) after the vertical line. There is no definition in the textbook but in math does that mean from K=K(res) to something that can be dependent on a function or a situation?

Like definite integrals answer $$x|^3_2=3-2=1$$
 
Physics news on Phys.org
NODARman said:
Homework Statement:: .
Relevant Equations:: .

Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
Just the k=k(res) after the vertical line. There is no definition in the textbook but in math does that mean from K=K(res) to something that can be dependent on a function or a situation?

Like definite integrals answer $$x|^3_2=3-2=1$$
Without additional context it's hard to say. However, I don't think it's like a definite integral. Can you post a clear picture of the textbook page where this appears?
 
$$
\left(\begin{array}{c}
D_{\psi \psi} \\
D_{\psi p}=D_{p \psi} \\
D_{p p}
\end{array}\right)=\left(\begin{array}{c}
\left.D \frac{\delta}{\gamma^2} E_k^2\right|_{k=k_{\text {res }}} \\
-\left.D \frac{\psi m c}{\gamma} E_k^2\right|_{k=k_{\text {res }}} \\
\left.D \frac{\psi^2 m^2 c^2}{\delta} E_k^2\right|_{k=k_{\text {res }}}
\end{array}\right),
\space where \space
E_k^2=\hbar \omega(k) n(k)=\int \frac{k^2 d \Omega}{(2 \pi)^2} \hbar \omega(\mathbf{k}) n(\mathbf{k})
$$
is energy density per unit of a one-dimensional wave vector and we assumed that ω(k) is an isotropic function of k.
we know that k is a wave vector (and the index "res" could be a doppler resonance for short) but what does it mean in that context (with E^2)?

This is from synchrotron radiation texbook.
Mark44 said:
Without additional context it's hard to say. However, I don't think it's like a definite integral. Can you post a clear picture of the textbook page where this appears?
I'll try to find the book.
 
NODARman said:
Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
It means ##E^2_k## evaluated at ##k=k_{res}##.
 
  • Like
Likes Grelbr42, PhDeezNutz, PeroK and 1 other person
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top