The most important thing concerning photons is NOT to think about them as little billiard-ball-like localizable particles. They are rather certain states of the quantized free electromagnetic field, called "single-photon Fock states". You are right saying that they are "the smallest unit of light", but also this has to be taken in the right meaning: If you have electromagnetic radiation of a given frequency ##f## then the least amount of radiation energy that can be absorbed by some medium is given by ##h f##. In this sense a photon is indivisible, i.e., it can be detected as a whole or not at all. Nevertheless the photon itself is not localizable, it doesn't even have a position observable to begin with.
On the other hand you are also right in saying that there are processes, where photons are inelastically scattered (indeed Raman scattering on an atom is one possibility). Then, they change there energy and thus their frequency. There are also processes of "non-linear optics", where you can have a reaction, where one photon of a given frequency is absorbed by some medium and two or more photons are emitted by the medium. Of course again energy-momentum conservation ("phase-matching conditions" as the quantum opticians call it) have to hold.