- 8,700
- 4,780
Ah, I missed the details in that post.JK423 said:I've done it at post #22.
This recipe cannot cover a photon position measurement since the photon disappears upon exciting an electron. Do you want to improve upon your definition of a position measurement, or do you want to treat photons and electrons on a different footing?JK423 said:Let me say first how i would define a position measurement. If the incident field/particle has a state |Ψ>, and expand this state on the basis of position eigenstates, then i would call a position measurement something that would make the wavefunction of the particle in the position representation "gather" around a point. So that, we will be able to say that it was here, in that box, and not in the andromeda galaxy. Knowing that the field/particle is located in a subregion of space, I think defines a position measurement.
In the quantum field view, one would say that there can be a response only if the field intensity is nonzero at the point of interaction. This works independent of the number of particles present.JK423 said:When charged fields/particles interact with the bubble chamber we see a trajectory. This trajectory has dimension, for example 0.5x0.5 mm^2 and that defines a subregion of space. I agree that what we see is the effect of the interaction of the particle with the atoms of the liquid, but there can be an interaction only if the particle's wavefunction is nonzero at the point of the interaction with an atom.
If you assume the collapse postulate, your view is consistent, as long as you don't claim that position can be measured arbitrarily well. This is just the Copenhagen interpretation.JK423 said:The fact that we see only a small trajectory -to my mind- means that the wavefunction of the particle is non-zero only in that subregion of space. It doesn't interact with the rest of the chamber, and its not in my house either.
So, that fits my definition of position measurement, the wavefunction is 'gathered' in a subregion of space.
Am I wrong?
The problem with this is that there is no known mechanism for causing the collapse. (Decoherence reduces the pure state to a mixture, but we don't observe a mixture of tracks - only a single one. This accounts correctly for the long-term average, but not of the collapse at each single instance.)
The quantum field picture doesn't need to assume a collapse; ordinary randomness is enough.