What does Wavelength have to do with Crustal Structure?

AI Thread Summary
The discussion centers on the relationship between geoid anomalies, gravity anomalies, and lithospheric composition, particularly how different wavelengths affect the lithosphere's ability to support loads. Short wavelengths do not depress the lithosphere, while long wavelengths can lead to flexure and a depression of the Moho. Participants explore the concept of wavelengths in the context of lithospheric loading, clarifying that it refers to the spatial extent of gravity anomalies. A gravity anomaly with a large wavelength indicates a broader area of influence, while the lithosphere's finite strength causes it to buckle under localized loads, resulting in short-wavelength anomalies. The conversation also touches on the implications of these concepts for understanding crustal isostasy and the rebound of the lithosphere following ice ages. Resources such as "Geodynamics" by Turcotte and Schubert are referenced for further reading on these topics.
RJLiberator
Gold Member
Messages
1,094
Reaction score
63
Forgive my ignorance, I am learning about topics like the geoid, geoid anomalies, gravity anomalies as it relates to lithospheric composition.

In my studies, I repeatedly find talk of show wavelengths and long wavelengths having different effects on crustal composition.

One example I can give that is at the focal point:

Lithosphere can support short wavelength, but cannot support high wave length.
What does this mean?Short wavelengths do not depress the lithosphere, long wavelengths result in flexure and a depression of the Moho.

I guess, my question is why are we talking of wavelengths here?
 
Earth sciences news on Phys.org
Are you reading about P and S waves? What exactly are you reading? ...it helps us to help you.
 
  • Like
Likes RJLiberator
jim mcnamara said:
Are you reading about P and S waves? What exactly are you reading? ...it helps us to help you.

I suspect this is along the lines of what he/she is talking about ?

Dynamics of crustal compensation and its influences on crustal isostasy
http://onlinelibrary.wiley.com/doi/10.1029/97JB00956/full#references

Geodynamics Turcotte Schubert - geosci.uchicago.edu
http://geosci.uchicago.edu/~kite/doc/Geodynamics_Turcotte_Schubert_part_of_ch_5.pdf

upload_2017-5-30_19-14-24.png
there's a number of other articles, some behind paywalls

this is not a subject that I am well versed in

@jim mcnamara ... are you able to expand on this subject ? as in what the wavelength is that they are talking about ? ... it's been 25yrs since I last studied about isostasy and lithospheric rebound etcDave
 
Last edited:
  • Like
Likes RJLiberator
Yes, that is a paragraph directly from the text that I am reading (chapter 5 of Geodynamics). I will check out the article you presented.
 
  • Like
Likes davenn
johnbbahm said:
I am not sure if I know what your are asking, but some crystals are wavelength sensitive,
Acousto-Optic Modulators work on the idea that at Braggs angle, the acoustic waves in a crystal
can change the path of a beam of light.
https://wp.optics.arizona.edu/milst...sites/48/2016/06/acousto-optics-modulator.pdf
No, I misread his title as "crystal" as well. He is talking about the Earth's crust... :smile:
 
  • Like
Likes RJLiberator
berkeman said:
No, I misread his title as "crystal" as well. He is talking about the Earth's crust... :smile:
That's funny, I completely misread that!
 
  • Like
Likes RJLiberator and berkeman
I will give this one more try after reading your question again.
In dense structures many of the optical wave equations apply, except C (the speed of light) becomes the speed of sound in that medium.
different types of rock and soil reflect and refract differently like different optical indexes.
I am not sure what would support a shorter wavelength over a longer one though, because generally
the Earth has a fairly severe high frequency cutoff at about 110 hz
 
  • Like
Likes RJLiberator
johnbbahm said:
I will give this one more try after reading your question again.
In dense structures many of the optical wave equations apply, except C (the speed of light) becomes the speed of sound in that medium.
different types of rock and soil reflect and refract differently like different optical indexes.
I am not sure what would support a shorter wavelength over a longer one though, because generally
the Earth has a fairly severe high frequency cutoff at about 110 hz

Please have a read of my links to get an understanding of what the OP is talking about
The subject is about lithospheric loading not reflection/refraction of say seismic ( sound) waves in the crust etcDave
 
  • Like
Likes RJLiberator and berkeman
  • #10
@davenn - I learned about this a long time ago as well. One look at the resources tells me to shut up and read.
 
  • Like
Likes RJLiberator and davenn
  • #11
Hi guys, sorry to get back to this thread so late.

I've learned that hte wavelength is describing the load on the lithosphere. I believe it is the wavelength of the load, but I should have a more concrete analysis when I read chapter 3 in Geodynamics by Turbcotte (sp?).
 
  • #12
Okay, so I made a mistake in my above post. It is not the wavelength of the load, but rather the wavelength of the resulting deflection of the plate under a force.

From chapter 3, second 11 of Geodynamics mentioned above:

"When an elastic plate is subjected to a horizontale force P, the plate can buckle if the applied force is sufficiently large. Fold trains in mountain belts are believed to result from the warping of strata under horizontal compression. We therefore consider the simplest example of plate buckling under horizontal compression to determine the minimum force required for buckling to occur and the form, that is, the wavelength, of the resulting deflection. "
 
  • #13
RJLiberator said:
Okay, so I made a mistake in my above post. It is not the wavelength of the load, but rather the wavelength of the resulting deflection of the plate under a force.

From chapter 3, second 11 of Geodynamics mentioned above:

"When an elastic plate is subjected to a horizontale force P, the plate can buckle if the applied force is sufficiently large. Fold trains in mountain belts are believed to result from the warping of strata under horizontal compression. We therefore consider the simplest example of plate buckling under horizontal compression to determine the minimum force required for buckling to occur and the form, that is, the wavelength, of the resulting deflection. "

but that is a totally different process to what you and I have originally discussed
I'm sure you will find lithospheric loading is a vertical load ... ie. from whatever is sitting on top of it. Not horizontal pressure/stress.
This process is one of the things studied when looking at continental ice sheets and how the crust and lithosphere rebound when the ice starts melting
( after a ice age)

I vaguely remember being taught that the North American Plate, particularly nthrn USA and Canada, the rebound is still occurring
so long after the ice age.

https://en.wikipedia.org/wiki/Post-glacial_rebound

http://www.antarcticglaciers.org/glaciers-and-climate/sea-level-rise-2/recovering-from-an-ice-age/

http://www.tulane.edu/~sanelson/eens1110/glaciers.htmtho these still don't answer your original Q on "What is wavelength in this context"
it is more info on the general subject

@Astronuc are you able to help out here please ?

Dave
 
  • #14
The wavelength is simply the spatial extent of the gravity anomaly. A gravity anomaly that spreads over a large area has a large wavelength. If the lithosphere were infinitely strong then a load would not cause a local depression (and hence a localised "short wavelength" gravity anomaly) but the lithosphere would bear the weight of the load over its entire extent (effectively creating a super "long wavelength" anomaly). Because the lithosphere, in reality, has a finite strength (characterised by its elastic thickness) it buckles locally under a load and cannot sustain a long-wavelength anomaly.
 
  • Like
Likes jim mcnamara and RJLiberator
  • #15
Thanks @billiards - is there a source with more detail on this?
 
  • Like
Likes billiards
  • #17
Question removed.
 
Back
Top