Dale said:
Again, (maybe the 3rd time now) the easiest way is to write it in a manifestly covariant form. It is worth learning the math just for this exact feature.
FWIW, I got it the first time. This is not something that will happen overnight. I've looked at some pages on 4 vectors and listened to a YouTube lecture introducing them (by a Yale physics professor).
There is a long (and not easy) path to get from where I am now to where it
is easy. If this is considered the
easiest path, then it looks a little grim. My crutch of using a Taylor/Wheeler lattice and making sure I dealt only with observables might not be at all elegant, but might at least guarantee that I can start and end a problem with invariants. From where I stand, this looks easier than taking a couple of years of math/physics classes.
Keep in mind that it's not just a matter of learning 4 vectors or whatever. It is a matter of learning it well enough to reach that "now I understand" moment.
@robphy, for example, listed a bunch of books he waded through until everything clicked for him—and it sounds like this happened after his undergrad time.
For some background, I'm 68 and a retired software engineer. I work on a variety of projects. My little venture into S.R. physics is for entertainment and not my main thing, and I'm unlikely to show up at a university class any time soon. It's unlikely I will ever understand invariants as you do, but I can probably understand them enough to get by in my little corner of physics.
BTW, in case it's not clear, I appreciate your help. And I am listening.
robphy said:
And as I have suggested earlier, similar claims would have to apply to any diagram from Euclidean geometry.
An invariant is something that is unchanged by some transformation. When we're talking about S.R., that transformation is defined as the Lorentz transformation. When we're talking about Euclidean geometry, I don't know which transformation you have in mind. As I mentioned, some things are invariant with respect, say, to rotation and translation, and not invariant with respect to shearing or scaling. You might be thinking of some mapping of Galilean relativity to Euclidean geometry; I don't know.
In any case, it sounds like we agree that looking at a diagram by itself lends no insight about invariants.
robphy said:
I'm not sure what you mean here.
If what you say [whatever you mean by it] is true, then the same thing can be said about Euclidean diagrams [as projections of a 4d-space?].
I had two diagrams (projections of worldlines with respect to different rest frames) which contained invariant elements. Inspecting the diagrams did not provide any insights what elements were invariant (and I already knew what some of the elements were—inspecting the diagrams didn't add anything).
I'm sure you could put together a great lecture that would work through a set of examples and, assuming you allowed me a lot of time to ask questions, would make your Euclidian-to-Minkowski analogies clear and useful. That, of course, would go way beyond any reasonable expectations for a PhysicsForum discussion. I'm not sure exactly what you're thinking, and you don't know what I know and don't know, so it's difficult for me to follow the exercise you have in mind.
I appreciate that you are trying to point me in a useful direction, and, at some point, maybe what you've said will become clear.