What Is E{x|x+y+z=1} for Independent Standard Normal Variables?

  • Thread starter Thread starter purplebird
  • Start date Start date
  • Tags Tags
    Expectation
purplebird
Messages
14
Reaction score
0
Given x,y and z are standard normal distributions with mean 0 and standard deviation 1. x,y and z are also statistically independent.

Find E{x|x+y+z=1}.
 
Physics news on Phys.org
symmetry of x, y, and z. For example, interchanging x and y in E[x| x+y+z=1] to get E[y|y+x+z = 1] doesn't change its value.
 
Adeimantus said:
symmetry of x, y, and z. For example, interchanging x and y in E[x| x+y+z=1] to get E[y|y+x+z = 1] doesn't change its value.

I am not able to understand what you are referring to. Could you please explain. Thanks.
 
Sure thing... If I understand the problem correctly, it doesn't really matter what the exact distributions of x, y, and z are. It only matters that they are identically distributed. Also, note that the condition x+y+z = 1 is unchanged by permuting the letters x,y,z. This, together with their being identically distributed means that

E{x|x+y+z=1} = E{y|x+y+z=1} = E{z|x+y+z=1}


Also, think about what E{x+y+z|x+y+z=1} would be, and remember the additive property of the expected value.

edit: think simple. no hard integrals needed, which was the first thing that came to my mind when I read the problem.
 
Last edited:
I left something out...it is also important that x,y,z are statistically independent. If, for example, x and y were statistically dependent, but x and z were not, then that would create an asymmetry and you could no longer conclude that the expected values of x, y, and z were equal.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top