What is Jacobi's identity for Lie derivatives on a smooth manifold?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
SUMMARY

Jacobi's identity for Lie derivatives on a smooth manifold states that for any vector fields $X$, $Y$, and $Z$, the following equation holds: $$[\mathscr{L}_X,[\mathscr{L}_Y,\mathscr{L}_Z]] + [\mathscr{L}_Y, [\mathscr{L}_Z,\mathscr{L}_X]] + [\mathscr{L}_Z, [\mathscr{L}_X, \mathscr{L}_Y]] = 0$$. This identity is crucial in the study of Lie derivatives and their properties in differential geometry. The discussion emphasizes the importance of understanding the behavior of Lie derivatives in the context of smooth manifolds.

PREREQUISITES
  • Understanding of vector fields on smooth manifolds
  • Familiarity with Lie derivatives and their notation
  • Knowledge of differential geometry concepts
  • Basic grasp of algebraic structures in mathematics
NEXT STEPS
  • Study the properties of Lie derivatives in differential geometry
  • Explore the implications of Jacobi's identity in mathematical physics
  • Learn about the applications of Lie brackets in algebraic topology
  • Investigate the relationship between Lie derivatives and symplectic geometry
USEFUL FOR

Mathematicians, physicists, and students specializing in differential geometry, particularly those interested in the properties and applications of Lie derivatives and algebraic structures on smooth manifolds.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Prove that for all vector fields $X$, $Y$, and $Z$ on a smooth manifold, their Lie derivatives $\mathscr{L}_X$, $\mathscr{L}_Y$, and $\mathscr{L}_Z$ satisfies Jacobi’s identity $$[\mathscr{L}_X,[\mathscr{L}_Y,\mathscr{L}_Z]] + [\mathscr{L}_Y, [\mathscr{L}_Z,\mathscr{L}_X]] + [\mathscr{L}_Z, [\mathscr{L}_X, \mathscr{L}_Y]] = 0$$

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
Let $X, Y, Z$ be vector fields on a smooth manifold $M$. They satisfy Jacobi's identity $[[X,Y], Z] + [[Y,Z],X] + [[Z,X],Y] = 0$, so $\mathscr{L}_{[[X,Y],Z]} + \mathscr{L}_{[[Y,Z],X]} + \mathscr{L}_{[[Z,X],Y]}.$ Therefore

$$[[\mathscr{L}_X,\mathscr{L}_Y], \mathscr{L}_Z] + [[\mathscr{L}_Y,\mathscr{L}_Z],\mathscr{L}_X] + [[\mathscr{L}_Z,\mathscr{L}_X], \mathscr{L}_Y]$$
$$=[\mathscr{L}_{[X,Y]},\mathscr{L}_Z] + [\mathscr{L}_{[Y,Z]}, \mathscr{L}_X] + [\mathscr{L}_{[Z,X]},\mathscr{L}_Y]$$
$$=\mathscr{L}_{[[X,Y],Z]} + \mathscr{L}_{[[Y,Z],X]} + \mathscr{L}_{[[Z,X],Y]}$$
$$= 0$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K