What Is the Antiderivative of 1/(1 + x^4)?

  • Context: MHB 
  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    Antiderivative
Click For Summary

Discussion Overview

The discussion revolves around finding the antiderivative of the function \( \frac{1}{1+x^{4}} \). Participants explore various methods of integration, including partial fractions and substitutions, while also referencing related integrals and previous discussions.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a detailed method for integrating \( \frac{1}{1+x^{4}} \) using partial fractions and algebraic manipulation, ultimately providing a complex expression for the antiderivative.
  • Another participant suggests moving the discussion to a math forum, indicating a potential need for a more specialized audience.
  • Several participants reference a previous thread related to similar integrals, indicating that this topic has been discussed before.
  • A later reply proposes a way to combine logarithmic and inverse tangent terms into a single expression, suggesting a simplification of the antiderivative.
  • Another participant generalizes the integral to a broader case involving \( x^{r-1} \) and \( x^{4r} \), indicating that the discussion may extend beyond the specific case initially presented.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best approach to the integral, with multiple methods and perspectives presented. There is also no agreement on whether to move the discussion to a math forum.

Contextual Notes

Some participants reference previous discussions and related integrals, but there are no explicit resolutions to the mathematical steps or methods proposed. The discussion includes various assumptions and conditions that are not fully resolved.

Who May Find This Useful

Readers interested in advanced calculus, integration techniques, and mathematical discussions around integrals may find this thread useful.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Problem: find
$$\int \frac{dx}{1+x^{4}}.$$

Answer: It's perhaps a not-so-well-known fact that, although $x^{2}+y^{2}$ does not factor over the reals, $x^{4}+y^{4}$ does. In fact,
$$x^{4}+y^{4}= \left(x^{2}+ \sqrt{2} \, xy+y^{2} \right) \left(x^{2}- \sqrt{2} \, xy+y^{2} \right).$$
Hence, we have
$$\int \frac{dx}{1+x^{4}}=\int \frac{dx}{\left(x^{2}+ \sqrt{2} \, x+1 \right) \left(x^{2}- \sqrt{2} \, x+1 \right)}.$$
Next, you can use partial fractions to pull them apart. That is, assume that you can write
$$\frac{1}{\left(x^{2}+ \sqrt{2} \, x+1 \right) \left(x^{2}- \sqrt{2} \, x+1 \right)}
= \frac{Ax+B}{x^{2}+ \sqrt{2} \, x+1}+ \frac{Cx+D}{x^{2}- \sqrt{2} \, x+1}.$$
Once you've done all that algebra, you wind up with
$$ \frac{1}{1+x^{4}}=
\frac{ (\sqrt{2} \,x+2)/4}{x^{2}+ \sqrt{2} \, x+1}- \frac{ (\sqrt{2} \,x-2)/4}{x^{2}- \sqrt{2} \, x+1}=\frac{ (2x+2 \sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}- \frac{ (2x-2 \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}.$$
The final trick is as follows: you write each of these two fractions as two more fractions (so you have four total); one of each of them you write so that the derivative of the denominator shows up in the numerator (setting up a $\ln$-type integral), and then the other one has just a constant in the numerator - so you can complete the square and get an $\tan^{-1}$-type integral. You'd get this:
$$ \frac{1}{1+x^{4}}=
\frac{ (2x+ \sqrt{2}+ \sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}- \frac{ (2x- \sqrt{2}- \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}$$
$$=\frac{ (2x+ \sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}
+ \frac{ (\sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}
- \frac{ (2x- \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}
-\frac{ (- \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}$$
$$=\frac{ (2x+ \sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}
+ \frac{1/4}{(x^{2}+ \sqrt{2} \, x+1/2)+1/2}
- \frac{ (2x- \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}
+\frac{ 1/4}{(x^{2}- \sqrt{2} \, x+1/2)+1/2}$$
$$=\frac{ (2x+ \sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}
+ \frac{1/4}{(x+ \sqrt{2}/2)^{2}+1/2}
- \frac{ (2x- \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}
+\frac{ 1/4}{(x- \sqrt{2}/2)^{2}+1/2}.$$
This succumbs to standard $u$-substitutions and knowledge of the $\tan^{-1}$ derivative.

The final answer is
$$\int \frac{dx}{1+x^{4}}$$
$$=\frac{ \sqrt{2}}{8} \ln \left(x^{2}+ \sqrt{2} \, x + 1 \right)
+ \frac{ \sqrt{2}}{4} \tan^{-1} \left( \sqrt{2} \, x+1 \right)
-\frac{ \sqrt{2}}{8} \ln \left(x^{2}- \sqrt{2} \, x + 1 \right)
+ \frac{ \sqrt{2}}{4} \tan^{-1} \left( \sqrt{2} \, x-1 \right)+C.$$
 
Last edited by a moderator:
  • Like
Likes   Reactions: dextercioby and topsquark
Physics news on Phys.org
Greg Bernhardt said:
Thanks @Ackbach, what math forum can we move this to?
Math -> Calculus, I think.
 
This came up earlier this year. I'm on my phone and can't find a way to post the link to a thread. If someone could search for "integrals that keep me up at night" and post the link here that would be great.
 
  • Like
Likes   Reactions: topsquark and Ackbach
You can combine the log terms into a single inverse ##\tanh## and combine the two inverse ##\tan## terms to get
$$\frac 1{2\sqrt 2}\bigg [\tan^{-1}\big (\frac{\sqrt 2 x}{1 -x^2}\big) + \tanh^{-1}\big (\frac{\sqrt 2 x}{1+ x^2}\big) \bigg ]$$
 
  • Like
Likes   Reactions: lurflurf, dextercioby, Ackbach and 1 other person
There is a simple generalisation:$$\int \frac{x^{r-1}}{1 +x^{4r}}\ dx = \frac 1{2r\sqrt 2}\bigg [\tan^{-1}\big (\frac{\sqrt 2 x^r}{1 -x^{2r}}\big) + \tanh^{-1}\big (\frac{\sqrt 2 x^r}{1+ x^{2r}}\big) \bigg ]+ C$$
 
  • Like
Likes   Reactions: SammyS, lurflurf and Ackbach

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K