MHB What Is the Antiderivative of 1/(1 + x^4)?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    Antiderivative
Click For Summary
The integral of 1/(1 + x^4) can be solved by factoring the denominator into two quadratic expressions and using partial fractions. The integration process involves separating the fractions and applying techniques such as completing the square and recognizing forms that lead to logarithmic and arctangent integrals. The final result combines logarithmic and arctangent functions, yielding a complex expression involving constants and variables. Additionally, there is a generalization for integrals of the form x^(r-1)/(1 + x^(4r)). This discussion emphasizes advanced integration techniques and their applications in calculus.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Problem: find
$$\int \frac{dx}{1+x^{4}}.$$

Answer: It's perhaps a not-so-well-known fact that, although $x^{2}+y^{2}$ does not factor over the reals, $x^{4}+y^{4}$ does. In fact,
$$x^{4}+y^{4}= \left(x^{2}+ \sqrt{2} \, xy+y^{2} \right) \left(x^{2}- \sqrt{2} \, xy+y^{2} \right).$$
Hence, we have
$$\int \frac{dx}{1+x^{4}}=\int \frac{dx}{\left(x^{2}+ \sqrt{2} \, x+1 \right) \left(x^{2}- \sqrt{2} \, x+1 \right)}.$$
Next, you can use partial fractions to pull them apart. That is, assume that you can write
$$\frac{1}{\left(x^{2}+ \sqrt{2} \, x+1 \right) \left(x^{2}- \sqrt{2} \, x+1 \right)}
= \frac{Ax+B}{x^{2}+ \sqrt{2} \, x+1}+ \frac{Cx+D}{x^{2}- \sqrt{2} \, x+1}.$$
Once you've done all that algebra, you wind up with
$$ \frac{1}{1+x^{4}}=
\frac{ (\sqrt{2} \,x+2)/4}{x^{2}+ \sqrt{2} \, x+1}- \frac{ (\sqrt{2} \,x-2)/4}{x^{2}- \sqrt{2} \, x+1}=\frac{ (2x+2 \sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}- \frac{ (2x-2 \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}.$$
The final trick is as follows: you write each of these two fractions as two more fractions (so you have four total); one of each of them you write so that the derivative of the denominator shows up in the numerator (setting up a $\ln$-type integral), and then the other one has just a constant in the numerator - so you can complete the square and get an $\tan^{-1}$-type integral. You'd get this:
$$ \frac{1}{1+x^{4}}=
\frac{ (2x+ \sqrt{2}+ \sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}- \frac{ (2x- \sqrt{2}- \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}$$
$$=\frac{ (2x+ \sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}
+ \frac{ (\sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}
- \frac{ (2x- \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}
-\frac{ (- \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}$$
$$=\frac{ (2x+ \sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}
+ \frac{1/4}{(x^{2}+ \sqrt{2} \, x+1/2)+1/2}
- \frac{ (2x- \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}
+\frac{ 1/4}{(x^{2}- \sqrt{2} \, x+1/2)+1/2}$$
$$=\frac{ (2x+ \sqrt{2})/(4 \sqrt{2})}{x^{2}+ \sqrt{2} \, x+1}
+ \frac{1/4}{(x+ \sqrt{2}/2)^{2}+1/2}
- \frac{ (2x- \sqrt{2})/(4 \sqrt{2})}{x^{2}- \sqrt{2} \, x+1}
+\frac{ 1/4}{(x- \sqrt{2}/2)^{2}+1/2}.$$
This succumbs to standard $u$-substitutions and knowledge of the $\tan^{-1}$ derivative.

The final answer is
$$\int \frac{dx}{1+x^{4}}$$
$$=\frac{ \sqrt{2}}{8} \ln \left(x^{2}+ \sqrt{2} \, x + 1 \right)
+ \frac{ \sqrt{2}}{4} \tan^{-1} \left( \sqrt{2} \, x+1 \right)
-\frac{ \sqrt{2}}{8} \ln \left(x^{2}- \sqrt{2} \, x + 1 \right)
+ \frac{ \sqrt{2}}{4} \tan^{-1} \left( \sqrt{2} \, x-1 \right)+C.$$
 
Last edited by a moderator:
  • Like
Likes dextercioby and topsquark
Physics news on Phys.org
Greg Bernhardt said:
Thanks @Ackbach, what math forum can we move this to?
Math -> Calculus, I think.
 
This came up earlier this year. I'm on my phone and can't find a way to post the link to a thread. If someone could search for "integrals that keep me up at night" and post the link here that would be great.
 
  • Like
Likes topsquark and Ackbach
You can combine the log terms into a single inverse ##\tanh## and combine the two inverse ##\tan## terms to get
$$\frac 1{2\sqrt 2}\bigg [\tan^{-1}\big (\frac{\sqrt 2 x}{1 -x^2}\big) + \tanh^{-1}\big (\frac{\sqrt 2 x}{1+ x^2}\big) \bigg ]$$
 
  • Like
Likes lurflurf, dextercioby, Ackbach and 1 other person
There is a simple generalisation:$$\int \frac{x^{r-1}}{1 +x^{4r}}\ dx = \frac 1{2r\sqrt 2}\bigg [\tan^{-1}\big (\frac{\sqrt 2 x^r}{1 -x^{2r}}\big) + \tanh^{-1}\big (\frac{\sqrt 2 x^r}{1+ x^{2r}}\big) \bigg ]+ C$$
 
  • Like
Likes SammyS, lurflurf and Ackbach

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
12
Views
3K
Replies
4
Views
4K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K