Ana said:
Show that the whole complex has zero following result (Cauchy Integral Theorem):
Wellcome on MHB Ana!...
According to the Residue Theorem is $\displaystyle \int_{C} f(z)\ d z = 2\ \pi\ i\ \sum_{k} r_{k}$, where the $r_{k}$ are the residues of f(*) inside C...
First integral: $\displaystyle \int_{|z|=2} \frac{d z}{z^{2}-1}\ (1)$
Here f(*) has two poles in z=1 and z=-1, both inside C. Is...
$\displaystyle r_{1} = \lim_{z \rightarrow 1} (z-1)\ f(z) = \frac{1}{2}$
$\displaystyle r_{-1} = \lim_{z \rightarrow - 1} (z+1)\ f(z) = - \frac{1}{2}$
... so that...
$\displaystyle \int_{|z|=2} \frac{d z}{z^{2}-1} = 2\ \pi\ i\ (r_{1} + r_{-1})=0\ (2)$
Second integral: $\displaystyle \int_{|z|=2} \frac{d z}{z^{2}+1}\ (3)$
Here f(*) has two poles in z=i and z=-i, both inside C. Is...
$\displaystyle r_{i} = \lim_{z \rightarrow i} (z-i)\ f(z) = \frac{1}{2\ i}$
$\displaystyle r_{-i} = \lim_{z \rightarrow - i} (z+i)\ f(z) = - \frac{1}{2\ i}$
... so that...
$\displaystyle \int_{|z|=2} \frac{d z}{z^{2}+1}= 2\ \pi\ i\ (r_{i} + r_{-i})=0 (4)$
Third integral: $\displaystyle \int_{|z|=2} \frac{d z}{z^{2} - (1-i)\ z -i}\ (5)$
Here f(*) has two poles in z=1 and z = -1 -i, both inside C. Is...
$\displaystyle r_{1} = \lim_{z \rightarrow 1} (z-1)\ f(z) = -\frac{1}{i}$
$\displaystyle r_{-1 - i} = \lim_{z \rightarrow 1 + i} (z + 1 + i)\ f(z) = \frac{1}{i}$
... so that...
$\displaystyle \int_{|z|=2} \frac{d z}{z^{2} - (1-i)\ z -i} = 2\ \pi\ i\ (r_{1} + r_{-1-i}) = 0\ (6) $
Kind regards
$\chi$ $\sigma$