What is the correct statement of Varignon's theorem?

  • Context: Undergrad 
  • Thread starter Thread starter Hak
  • Start date Start date
  • Tags Tags
    Classical mechanics
Click For Summary

Discussion Overview

The discussion centers on the correct statement of Varignon's theorem, exploring various interpretations and applications of the theorem in the context of mechanics. Participants express confusion regarding the conditions under which the theorem applies, particularly concerning the vectors involved and the nature of the quantities being compared.

Discussion Character

  • Debate/contested
  • Technical explanation

Main Points Raised

  • Some participants note discrepancies in the statements of Varignon's theorem found online, particularly regarding whether vectors must be applied at the same point or if they can be generic.
  • There is mention of confusion between 'momentum vector' and 'moment vector', with clarification that the theorem deals with moments rather than momentum.
  • One participant explains that the theorem applies to concurrent and coplanar forces, stating that the moment sum is equal to the moment of the resultant about a point.
  • It is suggested that if the forces are parallel rather than concurrent, the theorem still holds, but the resultant's location changes, which raises questions about the validity of this reasoning.
  • Participants discuss the extension of the theorem to three dimensions, indicating that this involves moments about an axis instead of a point.

Areas of Agreement / Disagreement

Participants express varying interpretations of Varignon's theorem, with no consensus on a singular correct statement. The discussion remains unresolved regarding the conditions and applications of the theorem.

Contextual Notes

There are limitations in the discussion regarding the assumptions made about the vectors and the specific conditions under which the theorem applies. The distinction between moment and momentum vectors is also a point of contention.

Hak
Messages
709
Reaction score
56
What is the correct statement of Varignon's theorem?
On the net I find some discrepancies between the various statements: in some cases the vectors of the system referred to by the theorem must be applied at the same point or such that their lines of action pass through the same point, in other cases the vectors are generic; in some cases the theorem concerns the equality of momentum vectors, in other cases it concerns the equality of the magnitudes of the momentum vectors only...
I'm a bit confused. Thank you very much for any reply.
 
Physics news on Phys.org
Hak said:
What is the correct statement of Varignon's theorem?
On the net I find some discrepancies between the various statements: in some cases the vectors of the system referred to by the theorem must be applied at the same point or such that their lines of action pass through the same point, in other cases the vectors are generic; in some cases the theorem concerns the equality of momentum vectors, in other cases it concerns the equality of the magnitudes of the momentum vectors only...
I'm a bit confused. Thank you very much for any reply.

I understand your confusion, because all are 'sort of' correct.

The theorem states essentially that the moment sum of 2 or more concurrent and coplanar forces (that is, acting in the same plane and meeting or tending (line of action) to meet at a point) is equal to the moment of the resultant of those forces about that point.

If the force vectors are not concurrent, but rather, parallel, then the theorem still applies, however, the resultant (non zero) of the parallel forces changes the location of that resultant, which can be calculated using the theorem, but that is a circular argument.

You then mention 'momentum vector' but you meant to say 'moment vector', the direction of which is out of plane using the right hand rule. The sum of each of the force moments about a point is equal to the resultant moment vector about that point. Now since moment vectors are often considered as plus or minus depending on if they are clockwise or counterclockwise, you might say that the magnitudes are equal, but that is a bit weak since moments are vectors.

The theorem can be extended to three dimensions, but then you are talking moments about an axis instead of a point.


 
PhanthomJay said:
I understand your confusion, because all are 'sort of' correct.

The theorem states essentially that the moment sum of 2 or more concurrent and coplanar forces (that is, acting in the same plane and meeting or tending (line of action) to meet at a point) is equal to the moment of the resultant of those forces about that point.

If the force vectors are not concurrent, but rather, parallel, then the theorem still applies, however, the resultant (non zero) of the parallel forces changes the location of that resultant, which can be calculated using the theorem, but that is a circular argument.

You then mention 'momentum vector' but you meant to say 'moment vector', the direction of which is out of plane using the right hand rule. The sum of each of the force moments about a point is equal to the resultant moment vector about that point. Now since moment vectors are often considered as plus or minus depending on if they are clockwise or counterclockwise, you might say that the magnitudes are equal, but that is a bit weak since moments are vectors.

The theorem can be extended to three dimensions, but then you are talking moments about an axis instead of a point.
Thank you very much.
 
Copied from:
https://www.uobabylon.edu.iq/eprints/publication_12_18868_684.pdf
Varignon's theorem.jpg
Parallel vectors.jpg

Varignon's theorem.jpg


Parallel vectors.jpg
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 9 ·
Replies
9
Views
7K