What is the correct tension equation for a pendulum at rest?

  • Thread starter Thread starter Pochen Liu
  • Start date Start date
  • Tags Tags
    Pendulum Tension
AI Thread Summary
The discussion centers on determining the correct tension equation for a pendulum at rest when the string breaks. The user questions whether the tension should be calculated using T = mgCos(theta) + mv^2/r or T = mgSin(theta) + mv^2/r, as the latter is indicated in the provided answers. A vector diagram suggests that the correct equation involves the sine component, leading to T = mgSin(theta) + mv^2/r. The importance of measuring the angle from the horizontal is emphasized to avoid confusion. The consensus is that the tension due to the weight of the bob at the original position (theta = 0) should be clarified in relation to the chosen equation.
Pochen Liu
Messages
52
Reaction score
2

Homework Statement


The pendulum cord is released from rest when the angle = 0 (from a horizontal)
If the string breaks when the tension is twice the weight of the bob at what angle does it break?

Im from NZ and our NCEA system is often riddled with mistakes and I want to clear this up.
Is the tension equation this:

T = mgCos(theta) + mv^2/r
or
T = mgSin(theta) + mv^2/r (What the answers say)

By drawing a vector diagram I believe the test is wrong as the component in Fg providing tension is mgCos(theta)

Can anyone confirm for me? and provide reasons why so that I don't confuse myself.
 
Physics news on Phys.org
Pochen Liu said:
T = mgCos(theta) + mv^2/r
or
T = mgSin(theta) + mv^2/r (What the answers say)

By drawing a vector diagram I believe the test is wrong as the component in Fg providing tension is mgCos(theta)

Can anyone confirm for me? and provide reasons why so that I don't confuse myself.

Don't get confused...Just make sure that the angle(theta) is measured from the horizontal.
Then by the vector diagram, you will get T=mgSin(theta) + mv^2/r.
 
  • Like
Likes Pochen Liu
What's the tension due to the weight of the bob in the original position (##\theta = 0##)?
 
  • Like
Likes Pochen Liu
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
3
Views
2K
Replies
21
Views
3K
Replies
8
Views
13K
Replies
9
Views
2K
Replies
21
Views
2K
Replies
1
Views
775
Replies
11
Views
4K
Replies
6
Views
2K
Replies
11
Views
5K
Replies
6
Views
2K
Back
Top