MHB What is the definition of lim sup and how is it related to subsequential limits?

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Limit Sequence
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Let $s_n$ be a sequence of real numbers and define $E$ to be the set of all subsequential limits of $s_n$ in the real extended line. Then we define the following

$$\lim \text{sup } s_n = \text{sup } E$$​

For some reason I don't quite understand the above formula , do we need to prove it ? It would be nice if you give some examples.
 
Physics news on Phys.org
ZaidAlyafey said:
Let $s_n$ be a sequence of real numbers and define $E$ to be the set of all subsequential limits of $s_n$ in the real extended line. Then we define the following
$$\lim \text{sup } s_n = \text{sup } E$$​
For some reason I don't quite understand the above formula , do we need to prove it ? It would be nice if you give some examples.

We really don't prove a definition. There are many equivalent ways to define lim sup.
But there is no point in reinventing the wheel. Have a look at this page.
 
Last edited:
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
7
Views
4K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 44 ·
2
Replies
44
Views
6K
Replies
4
Views
6K
Replies
2
Views
2K
Replies
2
Views
2K