MHB What is the determinant of the identity matrix in a larger matrix?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Factors
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Suppose A is a $5\times5$ matrix such that det(A)=2. Let
$$E=\left[\begin{array}{c}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array}\right]$$
then
$\left[\begin{array}{c}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array}\right]=
\left[\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right]
=-\left[\begin{array}{c}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]
=-\det\left[\begin{array}{c}1 & 0 \\ 0 & 1 \\ \end{array}\right]=-(1\cdot1)-(0 \cdot 0)=-1$
so
$det(AE)=(2)(-1)=-2$

ok W|A retured $\det(E)=-1$

But I got confused on the signs and assummed things
saw no need to demonstrate the 0 co factors
suggestions are welcome here..
 
Last edited:
Physics news on Phys.org
karush said:
$\left[\begin{array}{c}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array}\right]=
\left[\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right]
=-\left[\begin{array}{c}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]
=-\det\left[\begin{array}{c}1 & 0 \\ 0 & 1 \\ \end{array}\right] $
How can these possibly be equal?? The three matrices aren't the same size and the determinant is a number!

-Dan
 
topsquark said:
How can these possibly be equal?? The three matrices aren't the same size and the determinant is a number!

-Dan

They are co factors multipled by 1
 
karush said:
They are co factors multipled by 1
Cofactors are matrices but they are not the same as the matrix you started with! Please get your notations correct. We can write a determinant in two ways:
[math]det \left [ \begin{matrix} a & b \\ c & d \end{matrix} \right ] = \left | \begin{matrix} a & b \\ c & d \end{matrix} \right |[/math]

What you wrote was neither.

The determinant of the 5 x 5 matrix is -1. You are good right up to your last step. Expanding in cofactors as you did shows that the determinant is indeed -1. That is to say
[math]det \left [ \begin{matrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{matrix} \right ] = - det \left [ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{matrix} \right ] [/math]
And continue from here.

-Dan
 
Do we really need to do all these co factor if the original matrix can become rref
 
In fact, the last three columns and rows are just the identity matrix so this determinant can quickly be determined as \left|\begin{array}{cc}0 & 1 \\ 1 & 0 \end{array}\right|= 0(0)- 1(1)= -1.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
5
Views
1K
Replies
3
Views
1K
Replies
2
Views
3K
Replies
7
Views
2K
Replies
2
Views
970
Replies
19
Views
3K
Replies
1
Views
1K
Back
Top