- #1

- 14

- 0

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Xiaomin Chu
- Start date

- #1

- 14

- 0

- #2

bhobba

Mentor

- 9,654

- 2,734

Its a countably infinite Hilbert space.

Thanks

Bill

Thanks

Bill

- #3

- 14

- 0

Then how can spin operators represented by 2X2 matrices act on the countably infinite dimensional vectors to have eigenvalue equations?Its a countably infinite Hilbert space.

Thanks

Bill

- #4

bhobba

Mentor

- 9,654

- 2,734

Then how can spin operators represented by 2X2 matrices act on the countably infinite dimensional vectors to have eigenvalue equations?

Two countably infinite Hilbert spaces is also a countably infinite Hilbert space.

Thanks

Bill

- #5

- 14

- 0

You mean, tensor product?Two countably infinite Hilbert spaces is also a countably infinite Hilbert space.

Thanks

Bill

- #6

bhobba

Mentor

- 9,654

- 2,734

You mean, tensor product?

You can look at it that way.

But the usual way is via the observables forming a complete commuting set:

http://en.wikipedia.org/wiki/Complete_set_of_commuting_observables

The spin observable and position observable form a complete commuting set (ignoring the issue of the eigenfunctions of the position operator being continuous)

Thanks

Bill

- #7

- 14

- 0

Thanks.You can look at it that way.

But the usual way is via the observables forming a complete commuting set:

http://en.wikipedia.org/wiki/Complete_set_of_commuting_observables

The spin observable and position observable form a complete commuting set (ignoring the issue of the eigenfunctions of the position operator being continuous)

Thanks

Bill

Is this correct:?

A state vector is a vector in a Hilbert space which is the tensor product of a CSCO's space. Each operator in CSCO operates on its own indices, so position and spin operators do not affect each other.

Then another problem, just the same as entanglement: tensor product will create "non-product state". What does it mean?

- #8

bhobba

Mentor

- 9,654

- 2,734

A state vector is a vector in a Hilbert space which is the tensor product of a CSCO's space. Each operator in CSCO operates on its own indices, so position and spin operators do not affect each other.

Yes.

Then another problem, just the same as entanglement: tensor product will create "non-product state". What does it mean?

What does what mean?

I am however not up on things like simply separable states, Segre embeddings etc so may not be able to help.

Thanks

Bill

- #9

- 17,439

- 8,427

You come to a matrix-differential-operator algebra on the Hilbert space ##L^2(\mathbb{R}^3,\mathbb{C}^{2s+1}##, i.e., the Hilbert space of square Lebesgue-integrable ##\mathbb{C}^{2s+1}##-valued functions when choosing the position representation. So let ##|\Psi \rangle## be a normalizable (true) Hilbert-space vector, then the mapping from the abstract Hilbert space ##\mathcal{H}## to this function-Hilbert space is given by

$$|\Psi \rangle \mapsto \Psi_{\sigma}(\vec{x})=\langle \vec{x},\sigma|\Psi \rangle, \quad \vec{x} \in \mathbb{R}^3,\sigma \in \{-s,-s+1,\ldots,s-1,2 \}.$$

In this representation operators are represented by "matrices". The matrix elements for position and spin-##z## components are very simple to calculate, because we've chosen the common (generalized) eigenvectors as a (generalized) basis for our position-spin wave-mechanics representation:

$$\hat{\vec{x}} \mapsto \langle \vec{x}_1,\sigma_1|\hat{\vec{x}} \vec{x}_2,\sigma_2 \rangle=\vec{x}_2 \langle \vec{x}_1,\sigma_1|\vec{x}_2,\sigma_2 \rangle =\vec{x}_2 \delta^{(3)} (\vec{x}_1-\vec{x}_2) \delta_{\sigma_1 \sigma_2},$$

$$\hat{\sigma}_z \mapsto \langle \vec{x}_1,\sigma_1|\hat{\sigma}_z \vec{x}_2,\sigma_2 \rangle=\sigma_2 \langle \vec{x}_1,\sigma_1|\vec{x}_2,\sigma_2 \rangle=\sigma_2 \delta^{(3)} (\vec{x}_1-\vec{x}_2) \delta_{\sigma_1 \sigma_2}.$$

Thus in the position-spin representation one has

$$\hat{\vec{x}},\sigma |\Psi \rangle \mapsto \sum_{\sigma'=-s}^s \int_{\mathbb{R}^3} \langle \vec{x},\sigma|\hat{\vec{x}} \vec{x}',\sigma' \rangle \Psi_{\sigma'}(\vec{x}') = \vec{x} \Psi_{\sigma}(\vec{x}),$$

$$\hat{\sigma}_z,\sigma |\Psi \rangle \mapsto \sum_{\sigma'=-s}^s \int_{\mathbb{R}^3} \langle \vec{x},\sigma|\hat{\sigma_z} \vec{x}',\sigma' \rangle \Psi_{\sigma'}(\vec{x}') = \sigma \Psi_{\sigma}(\vec{x}).$$

For other operators one has to use the commutator algebra (which follows from the corresponding representation of the Galilei group, which is characterized by the mass as a central charge of this group and the spin-quantum number ##s## of the particle, which is a Casimir operator of the group). E.g., from these considerations you come to

$$\hat{\vec{p}} |\Psi \rangle \mapsto -\mathrm{i} \hbar \vec{\nabla} \Psi_{\sigma}(\vec{x}).$$

- #10

kith

Science Advisor

- 1,371

- 464

If you wanted to say that the tensor product allows non-product states, i.e. entangled states, you are right. Position and spin degrees of freedom can be entangled.Then another problem, just the same as entanglement: tensor product will create "non-product state". What does it mean?

An example of this is the Stern-Gerlach experiment. Initially, you have a product state and the position and spin degrees of freedom evolve independently because the Hamiltonian acts independently on the position space and the spin space. The magnetic field gradient then introduces a term into the Hamiltonian which acts on both spaces. After the interaction, you have a superposition state where the position and spin degrees of freedom are entangled. Spin up is correlated with moving along a certain upper trajectory, spin down with moving along a certain lower trajectory.

- #11

- 14

- 0

Thanks

You come to a matrix-differential-operator algebra on the Hilbert space ##L^2(\mathbb{R}^3,\mathbb{C}^{2s+1}##, i.e., the Hilbert space of square Lebesgue-integrable ##\mathbb{C}^{2s+1}##-valued functions when choosing the position representation. So let ##|\Psi \rangle## be a normalizable (true) Hilbert-space vector, then the mapping from the abstract Hilbert space ##\mathcal{H}## to this function-Hilbert space is given by

$$|\Psi \rangle \mapsto \Psi_{\sigma}(\vec{x})=\langle \vec{x},\sigma|\Psi \rangle, \quad \vec{x} \in \mathbb{R}^3,\sigma \in \{-s,-s+1,\ldots,s-1,2 \}.$$

In this representation operators are represented by "matrices". The matrix elements for position and spin-##z## components are very simple to calculate, because we've chosen the common (generalized) eigenvectors as a (generalized) basis for our position-spin wave-mechanics representation:

$$\hat{\vec{x}} \mapsto \langle \vec{x}_1,\sigma_1|\hat{\vec{x}} \vec{x}_2,\sigma_2 \rangle=\vec{x}_2 \langle \vec{x}_1,\sigma_1|\vec{x}_2,\sigma_2 \rangle =\vec{x}_2 \delta^{(3)} (\vec{x}_1-\vec{x}_2) \delta_{\sigma_1 \sigma_2},$$

$$\hat{\sigma}_z \mapsto \langle \vec{x}_1,\sigma_1|\hat{\sigma}_z \vec{x}_2,\sigma_2 \rangle=\sigma_2 \langle \vec{x}_1,\sigma_1|\vec{x}_2,\sigma_2 \rangle=\sigma_2 \delta^{(3)} (\vec{x}_1-\vec{x}_2) \delta_{\sigma_1 \sigma_2}.$$

Thus in the position-spin representation one has

$$\hat{\vec{x}},\sigma |\Psi \rangle \mapsto \sum_{\sigma'=-s}^s \int_{\mathbb{R}^3} \langle \vec{x},\sigma|\hat{\vec{x}} \vec{x}',\sigma' \rangle \Psi_{\sigma'}(\vec{x}') = \vec{x} \Psi_{\sigma}(\vec{x}),$$

$$\hat{\sigma}_z,\sigma |\Psi \rangle \mapsto \sum_{\sigma'=-s}^s \int_{\mathbb{R}^3} \langle \vec{x},\sigma|\hat{\sigma_z} \vec{x}',\sigma' \rangle \Psi_{\sigma'}(\vec{x}') = \sigma \Psi_{\sigma}(\vec{x}).$$

For other operators one has to use the commutator algebra (which follows from the corresponding representation of the Galilei group, which is characterized by the mass as a central charge of this group and the spin-quantum number ##s## of the particle, which is a Casimir operator of the group). E.g., from these considerations you come to

$$\hat{\vec{p}} |\Psi \rangle \mapsto -\mathrm{i} \hbar \vec{\nabla} \Psi_{\sigma}(\vec{x}).$$

- #12

- 14

- 0

ThanksIf you wanted to say that the tensor product allows non-product states, i.e. entangled states, you are right. Position and spin degrees of freedom can be entangled.

An example of this is the Stern-Gerlach experiment. Initially, you have a product state and the position and spin degrees of freedom evolve independently because the Hamiltonian acts independently on the position space and the spin space. The magnetic field gradient then introduces a term into the Hamiltonian which acts on both spaces. After the interaction, you have a superposition state where the position and spin degrees of freedom are entangled. Spin up is correlated with moving along a certain upper trajectory, spin down with moving along a certain lower trajectory.

Share: