MHB What is the final pressure of helium and neon gas mixture in this case?

AI Thread Summary
The final pressure of a helium and neon gas mixture is calculated using the formula for ideal gases, leading to a result of 6.67 bar, which contradicts the initially provided answer of 10.0 bar. The calculation considers the moles of each gas and their respective pressures, while eliminating volume from the equations. By applying the ideal gas law, the final pressure is derived from the total moles and the inverse of the pressures. Therefore, the correct final pressure for the mixture is 6.67 bar, indicating the initial answer was incorrect.
WMDhamnekar
MHB
Messages
376
Reaction score
28
Gas laws Helium Neon.png


The answer given to the above question is Final pressure$=\frac{(10.0mol\times 5.00bar) + (5.00 mol \times 20.0 bar)}{(10.0 mol +5.00 mol)}= 10.0 bar$ Is this answer correct? if yes, How and why?

My question is while computing this answer, the volumes of each gas is not considered.

Note:- While computing the volumes of each gas, temperature is not considered as it is a constant.The computed volume of helium gas $=\frac{(10.0mol \times 8.314472 J/mol\cdot K)}{5.00 bar}=0.16628944 Litres$

The computed volume of neon gas $= \frac{(5.00 mols \times 8.314472 J/mol\cdot K)}{20.0 bar}= 0.02078618 Litres$

How to use this additional information to compute the final pressure of the gas mixture?
 
Mathematics news on Phys.org
We can treat noble gasses as ideal gasses, which means we can use the formula $p V = n R T$, which is independent of the actual type of gas.
Let the first container have $n_1$ moles, pressure $p_1$, and volume $V_1$.
Let the second container have $n_2$, $p_2$, and $V_2$.
Let the temperature be $T$, and let the final pressure be $p$.

Then we have:
\begin{cases}p_1V_1 = n_1 R T \\ p_2 V_2 = n_2 R T \\ p(V_1+V_2) = (n_1+n_2) R T \end{cases}
Since we do not know the volumes, we will eliminate them from the equations:
$$\begin{cases}V_1 = \frac{n_1 R T}{p_1} \\ V_2 = \frac{n_2 R T}{p_2} \\ p(V_1+V_2) = (n_1+n_2) R T \end{cases}
\implies p = \frac{(n_1+n_2) R T}{V_1+V_2} = \frac{(n_1+n_2) R T}{\frac{n_1 R T}{p_1}+\frac{n_2 R T}{p_2}}
=\frac{n_1+n_2}{\frac{n_1}{p_1}+\frac{n_2}{p_2}}= \frac{10.0+5.00}{\frac{10.0}{5.00}+\frac{5.00}{20.0}}=6.67\,\text{bar}$$

So it looks as if the given answer is incorrect.
The final pressure should be $p=6.67\,\text{bar}$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top