- 23,708
- 5,924
For drag flow past a circular cylinder, the drag coefficient is nearly constant on the order of about 1.0 for Reynolds numbers on the order of about 1000 to 100,000. So, the drag force per unit length on the rod is $$f=\frac{1}{2}\rho v^2 D$$where D is the diameter and v is the velocity across the rod (the component of velocity normal to the rod). So $$f=k(\omega r)^2=k'r^2$$where r is the distance from the hinge. So, to a good approximation, Haruspex's exponent is 2. The moment of the drag force is $$M=FL\cos{\theta}=\int_0^L{k'r^3dr}=k'\frac{L^4}{4}$$So, $$k'=\frac{4F}{L^3}\cos{\theta}$$This means that the local normal force per unit length exerted by the fluid on the rod is:
$$f=\frac{4Fr^2}{L^3}\cos{\theta}$$So, what is the normal force that the fluid exerts on the rod?
$$f=\frac{4Fr^2}{L^3}\cos{\theta}$$So, what is the normal force that the fluid exerts on the rod?