MHB What is the Integral Expansion for UHWO 242?

Click For Summary
The integral expansion for UHWO 242 is derived from the expression I = ∫(3x^2 - x^2 + 6x - 4)/((x^2 + 1)(x^2 + 2)) dx. The result of the integral is given as (2/3)ln(x^2 + 1) - 3arctan(x) + √2arctan(x/√2) + C. The discussion involves breaking down the integrand into partial fractions, leading to the equivalence of the original expression with the sum of simpler fractions. Substitutions are suggested for solving the resulting integrals, confirming the validity of the approach. The conversation emphasizes the importance of correctly applying integration techniques to achieve the final result.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\displaystyle
I=\int \frac{3{x}^{2}-{x}^{2}+6x-4}{({x}^{2}+1)({x}^{2}+2)} \\
=\frac{2}{3}\ln\left({x}^{2}+1\right)-3\arctan\left({x}\right)
+\sqrt{2}\arctan\left({x/\sqrt{2}}\right)+C$$

Was going to take this a step at a time
so by observation this looks like an expasion
The way the answer looks
 
Last edited:
Physics news on Phys.org
$$\dfrac{3x^3-x^2+6x-4}{(x^2+1)(x^2+2)}=\dfrac{3x-3}{x^2+1}+\dfrac{2}{x^2+2}$$
 
I got but think its the same

$$\frac{2}{\left(x^{2}+2\right)}
+\frac{3x}{\left(x^{2}+1\right)}
-\frac{3}{\left(x^{2}+1\right)}$$
 
It's the same.
 
karush said:
$$\displaystyle
I=\int \frac{3{x}^{2}-{x}^{2}+6x-4}{({x}^{2}+1)({x}^{2}+2)} \\
=\frac{2}{3}\ln\left({x}^{2}+1\right)-3\arctan\left({x}\right)
+\sqrt{2}\arctan\left({x/\sqrt{2}}\right)+C$$

Was going to take this a step at a time
so by observation this looks like an expasion
The way the answer looks

I'm assuming it's actually $\displaystyle \begin{align*} \int{ \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \,\mathrm{d}x} \end{align*}$, anyway applying Partial Fractions...

$\displaystyle \begin{align*} \frac{A\,x + B}{x^2 + 1} + \frac{C\,x + D}{x^2 + 2} &\equiv \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \\ \frac{ \left( A\,x + B \right) \left( x^2 + 2 \right) + \left( C\,x + D \right) \left( x^2 + 1 \right) }{ \left( x^2 + 1 \right) \left( x^2 + 2 \right) } &\equiv \frac{3\,x^3 - x^2 + 6\,x - 4}{ \left( x^2 + 1 \right) \left( x^2 + 2 \right) } \\ \left( A\,x + B \right) \left( x^2 + 2 \right) + \left( C\,x + D \right) \left( x^2 + 1 \right) &\equiv 3\,x^3 - x^2 + 6\,x - 4 \end{align*}$

Let $\displaystyle \begin{align*} x = \mathrm{i} \end{align*}$ to find $\displaystyle \begin{align*} A\,\mathrm{i} + B = 3\,\mathrm{i} - 3 \implies A = 3 \textrm{ and } B = -3 \end{align*}$.

Let $\displaystyle \begin{align*} x = \sqrt{2}\,\mathrm{i} \end{align*}$ to find $\displaystyle \begin{align*} -\sqrt{2}\,\mathrm{i}\,C - D = 0\,\mathrm{i} - 2 \implies C = 0 \textrm{ and } D = 2 \end{align*}$. So

$\displaystyle \begin{align*} \int{ \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \,\mathrm{d}x } &= \int{ \left( \frac{3\,x - 3}{x^2 + 1} + \frac{2}{x^2 + 2} \right) \,\mathrm{d}x } \\ &= \frac{3}{2} \int{ \frac{2\,x - 2}{x^2 + 1} \,\mathrm{d}x } + 2 \int{ \frac{1}{x^2 + 2} \,\mathrm{d}x } \\ &= \frac{3}{2} \int{ \frac{2\,x}{x^2 + 1} \,\mathrm{d}x } - 3\int{ \frac{1}{x^2 + 1}\,\mathrm{d}x } + 2\int{ \frac{1}{x^2 + 2} \,\mathrm{d}x } \end{align*}$

The first integral can be solved with the substitution $\displaystyle \begin{align*} u = x^2 + 1 \implies \mathrm{d}u = 2\,x\,\mathrm{d}x \end{align*}$, the second can be solved with the substitution $\displaystyle \begin{align*} x = \tan{ \left( \theta \right) } \implies \mathrm{d}x = \sec^2{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$, and the third with the substitution $\displaystyle \begin{align*} x = \sqrt{2}\tan{ \left( t \right) } \implies \mathrm{d}x = \sqrt{2}\sec^2{ \left( t \right) }\,\mathrm{d}t \end{align*}$.
 
$$\displaystyle
I= \int{ \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \,dx } \\
= \frac{3}{2} \int{ \frac{2\,x}{x^2 + 1} \,dx }
- 3\int{ \frac{1}{x^2 + 1}\,dx }
+ 2\int{ \frac{1}{x^2 + 2} \,dx } $$
solving (1)
$$\displaystyle\frac{3}{2} \int{ \frac{2\,x}{x^2 + 1} \,dx } =
\frac{3\ln\left({{x}^{2}+1}\right)}{2}$$
solving (2)
$$- 3\int{ \frac{1}{x^2 + 1}\,dx } \\
\displaystyle \begin{align*} x = \tan{ \left( u \right) }
\implies dx = \sec^2{ \left(u \right) } \,du
\end{align*} \\
-3\int\frac{1}{\tan^2\left({u}\right)+1}\sec^2{ \left(u \right) } \,du
$$
doesn't this cancel out
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K