What is the Integral Expansion for UHWO 242?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Expansion Integral
Click For Summary

Discussion Overview

The discussion revolves around the integral expansion of the function \( \frac{3x^3 - x^2 + 6x - 4}{(x^2 + 1)(x^2 + 2)} \). Participants explore various methods of integration, particularly focusing on partial fraction decomposition and the resulting integrals. The conversation includes technical reasoning and mathematical expressions related to the integration process.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents an integral and suggests it appears to be an expansion, noting the form of the answer.
  • Another participant proposes a partial fraction decomposition of the integrand, breaking it down into simpler fractions.
  • A third participant confirms the equivalence of their expression to the previous one, indicating they believe it is the same.
  • Further elaboration on the partial fraction decomposition is provided, including specific values for coefficients derived from substituting complex numbers.
  • Participants discuss the integration of the decomposed fractions, suggesting various substitution methods for solving the integrals.
  • One participant questions whether a specific integral cancels out during the integration process, indicating uncertainty about the outcome.

Areas of Agreement / Disagreement

Participants generally agree on the approach of using partial fractions to simplify the integral, but there is no consensus on the final steps or the implications of the integration process. Some participants express uncertainty about specific integrals and their evaluations.

Contextual Notes

Limitations include potential missing assumptions in the integration steps, dependencies on the definitions of the integrals, and unresolved mathematical steps in the integration process.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\displaystyle
I=\int \frac{3{x}^{2}-{x}^{2}+6x-4}{({x}^{2}+1)({x}^{2}+2)} \\
=\frac{2}{3}\ln\left({x}^{2}+1\right)-3\arctan\left({x}\right)
+\sqrt{2}\arctan\left({x/\sqrt{2}}\right)+C$$

Was going to take this a step at a time
so by observation this looks like an expasion
The way the answer looks
 
Last edited:
Physics news on Phys.org
$$\dfrac{3x^3-x^2+6x-4}{(x^2+1)(x^2+2)}=\dfrac{3x-3}{x^2+1}+\dfrac{2}{x^2+2}$$
 
I got but think its the same

$$\frac{2}{\left(x^{2}+2\right)}
+\frac{3x}{\left(x^{2}+1\right)}
-\frac{3}{\left(x^{2}+1\right)}$$
 
It's the same.
 
karush said:
$$\displaystyle
I=\int \frac{3{x}^{2}-{x}^{2}+6x-4}{({x}^{2}+1)({x}^{2}+2)} \\
=\frac{2}{3}\ln\left({x}^{2}+1\right)-3\arctan\left({x}\right)
+\sqrt{2}\arctan\left({x/\sqrt{2}}\right)+C$$

Was going to take this a step at a time
so by observation this looks like an expasion
The way the answer looks

I'm assuming it's actually $\displaystyle \begin{align*} \int{ \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \,\mathrm{d}x} \end{align*}$, anyway applying Partial Fractions...

$\displaystyle \begin{align*} \frac{A\,x + B}{x^2 + 1} + \frac{C\,x + D}{x^2 + 2} &\equiv \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \\ \frac{ \left( A\,x + B \right) \left( x^2 + 2 \right) + \left( C\,x + D \right) \left( x^2 + 1 \right) }{ \left( x^2 + 1 \right) \left( x^2 + 2 \right) } &\equiv \frac{3\,x^3 - x^2 + 6\,x - 4}{ \left( x^2 + 1 \right) \left( x^2 + 2 \right) } \\ \left( A\,x + B \right) \left( x^2 + 2 \right) + \left( C\,x + D \right) \left( x^2 + 1 \right) &\equiv 3\,x^3 - x^2 + 6\,x - 4 \end{align*}$

Let $\displaystyle \begin{align*} x = \mathrm{i} \end{align*}$ to find $\displaystyle \begin{align*} A\,\mathrm{i} + B = 3\,\mathrm{i} - 3 \implies A = 3 \textrm{ and } B = -3 \end{align*}$.

Let $\displaystyle \begin{align*} x = \sqrt{2}\,\mathrm{i} \end{align*}$ to find $\displaystyle \begin{align*} -\sqrt{2}\,\mathrm{i}\,C - D = 0\,\mathrm{i} - 2 \implies C = 0 \textrm{ and } D = 2 \end{align*}$. So

$\displaystyle \begin{align*} \int{ \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \,\mathrm{d}x } &= \int{ \left( \frac{3\,x - 3}{x^2 + 1} + \frac{2}{x^2 + 2} \right) \,\mathrm{d}x } \\ &= \frac{3}{2} \int{ \frac{2\,x - 2}{x^2 + 1} \,\mathrm{d}x } + 2 \int{ \frac{1}{x^2 + 2} \,\mathrm{d}x } \\ &= \frac{3}{2} \int{ \frac{2\,x}{x^2 + 1} \,\mathrm{d}x } - 3\int{ \frac{1}{x^2 + 1}\,\mathrm{d}x } + 2\int{ \frac{1}{x^2 + 2} \,\mathrm{d}x } \end{align*}$

The first integral can be solved with the substitution $\displaystyle \begin{align*} u = x^2 + 1 \implies \mathrm{d}u = 2\,x\,\mathrm{d}x \end{align*}$, the second can be solved with the substitution $\displaystyle \begin{align*} x = \tan{ \left( \theta \right) } \implies \mathrm{d}x = \sec^2{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$, and the third with the substitution $\displaystyle \begin{align*} x = \sqrt{2}\tan{ \left( t \right) } \implies \mathrm{d}x = \sqrt{2}\sec^2{ \left( t \right) }\,\mathrm{d}t \end{align*}$.
 
$$\displaystyle
I= \int{ \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \,dx } \\
= \frac{3}{2} \int{ \frac{2\,x}{x^2 + 1} \,dx }
- 3\int{ \frac{1}{x^2 + 1}\,dx }
+ 2\int{ \frac{1}{x^2 + 2} \,dx } $$
solving (1)
$$\displaystyle\frac{3}{2} \int{ \frac{2\,x}{x^2 + 1} \,dx } =
\frac{3\ln\left({{x}^{2}+1}\right)}{2}$$
solving (2)
$$- 3\int{ \frac{1}{x^2 + 1}\,dx } \\
\displaystyle \begin{align*} x = \tan{ \left( u \right) }
\implies dx = \sec^2{ \left(u \right) } \,du
\end{align*} \\
-3\int\frac{1}{\tan^2\left({u}\right)+1}\sec^2{ \left(u \right) } \,du
$$
doesn't this cancel out
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K