What is the Integral Expansion for UHWO 242?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Expansion Integral
Click For Summary
SUMMARY

The integral expansion for the function \( I = \int \frac{3x^3 - x^2 + 6x - 4}{(x^2 + 1)(x^2 + 2)} \, dx \) is derived using partial fractions. The result is expressed as \( I = \frac{2}{3} \ln(x^2 + 1) - 3 \arctan(x) + \sqrt{2} \arctan\left(\frac{x}{\sqrt{2}}\right) + C \). The discussion emphasizes the application of substitutions for solving the integrals involved, specifically \( u = x^2 + 1 \) and trigonometric substitutions for the arctangent terms. The final answer confirms the equivalence of the derived expression through detailed algebraic manipulation.

PREREQUISITES
  • Understanding of integral calculus, specifically integration techniques.
  • Familiarity with partial fraction decomposition.
  • Knowledge of trigonometric integrals and substitutions.
  • Proficiency in manipulating logarithmic and arctangent functions.
NEXT STEPS
  • Study the method of partial fraction decomposition in detail.
  • Learn about integration techniques involving trigonometric substitutions.
  • Explore the properties and applications of logarithmic integrals.
  • Practice solving integrals involving rational functions and their expansions.
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, integral equations, and advanced algebraic techniques. This discussion is beneficial for anyone looking to enhance their understanding of integral expansions and related methods.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\displaystyle
I=\int \frac{3{x}^{2}-{x}^{2}+6x-4}{({x}^{2}+1)({x}^{2}+2)} \\
=\frac{2}{3}\ln\left({x}^{2}+1\right)-3\arctan\left({x}\right)
+\sqrt{2}\arctan\left({x/\sqrt{2}}\right)+C$$

Was going to take this a step at a time
so by observation this looks like an expasion
The way the answer looks
 
Last edited:
Physics news on Phys.org
$$\dfrac{3x^3-x^2+6x-4}{(x^2+1)(x^2+2)}=\dfrac{3x-3}{x^2+1}+\dfrac{2}{x^2+2}$$
 
I got but think its the same

$$\frac{2}{\left(x^{2}+2\right)}
+\frac{3x}{\left(x^{2}+1\right)}
-\frac{3}{\left(x^{2}+1\right)}$$
 
It's the same.
 
karush said:
$$\displaystyle
I=\int \frac{3{x}^{2}-{x}^{2}+6x-4}{({x}^{2}+1)({x}^{2}+2)} \\
=\frac{2}{3}\ln\left({x}^{2}+1\right)-3\arctan\left({x}\right)
+\sqrt{2}\arctan\left({x/\sqrt{2}}\right)+C$$

Was going to take this a step at a time
so by observation this looks like an expasion
The way the answer looks

I'm assuming it's actually $\displaystyle \begin{align*} \int{ \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \,\mathrm{d}x} \end{align*}$, anyway applying Partial Fractions...

$\displaystyle \begin{align*} \frac{A\,x + B}{x^2 + 1} + \frac{C\,x + D}{x^2 + 2} &\equiv \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \\ \frac{ \left( A\,x + B \right) \left( x^2 + 2 \right) + \left( C\,x + D \right) \left( x^2 + 1 \right) }{ \left( x^2 + 1 \right) \left( x^2 + 2 \right) } &\equiv \frac{3\,x^3 - x^2 + 6\,x - 4}{ \left( x^2 + 1 \right) \left( x^2 + 2 \right) } \\ \left( A\,x + B \right) \left( x^2 + 2 \right) + \left( C\,x + D \right) \left( x^2 + 1 \right) &\equiv 3\,x^3 - x^2 + 6\,x - 4 \end{align*}$

Let $\displaystyle \begin{align*} x = \mathrm{i} \end{align*}$ to find $\displaystyle \begin{align*} A\,\mathrm{i} + B = 3\,\mathrm{i} - 3 \implies A = 3 \textrm{ and } B = -3 \end{align*}$.

Let $\displaystyle \begin{align*} x = \sqrt{2}\,\mathrm{i} \end{align*}$ to find $\displaystyle \begin{align*} -\sqrt{2}\,\mathrm{i}\,C - D = 0\,\mathrm{i} - 2 \implies C = 0 \textrm{ and } D = 2 \end{align*}$. So

$\displaystyle \begin{align*} \int{ \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \,\mathrm{d}x } &= \int{ \left( \frac{3\,x - 3}{x^2 + 1} + \frac{2}{x^2 + 2} \right) \,\mathrm{d}x } \\ &= \frac{3}{2} \int{ \frac{2\,x - 2}{x^2 + 1} \,\mathrm{d}x } + 2 \int{ \frac{1}{x^2 + 2} \,\mathrm{d}x } \\ &= \frac{3}{2} \int{ \frac{2\,x}{x^2 + 1} \,\mathrm{d}x } - 3\int{ \frac{1}{x^2 + 1}\,\mathrm{d}x } + 2\int{ \frac{1}{x^2 + 2} \,\mathrm{d}x } \end{align*}$

The first integral can be solved with the substitution $\displaystyle \begin{align*} u = x^2 + 1 \implies \mathrm{d}u = 2\,x\,\mathrm{d}x \end{align*}$, the second can be solved with the substitution $\displaystyle \begin{align*} x = \tan{ \left( \theta \right) } \implies \mathrm{d}x = \sec^2{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$, and the third with the substitution $\displaystyle \begin{align*} x = \sqrt{2}\tan{ \left( t \right) } \implies \mathrm{d}x = \sqrt{2}\sec^2{ \left( t \right) }\,\mathrm{d}t \end{align*}$.
 
$$\displaystyle
I= \int{ \frac{3\,x^3 - x^2 + 6\,x - 4}{\left( x^2 + 1 \right) \left( x^2 + 2 \right) } \,dx } \\
= \frac{3}{2} \int{ \frac{2\,x}{x^2 + 1} \,dx }
- 3\int{ \frac{1}{x^2 + 1}\,dx }
+ 2\int{ \frac{1}{x^2 + 2} \,dx } $$
solving (1)
$$\displaystyle\frac{3}{2} \int{ \frac{2\,x}{x^2 + 1} \,dx } =
\frac{3\ln\left({{x}^{2}+1}\right)}{2}$$
solving (2)
$$- 3\int{ \frac{1}{x^2 + 1}\,dx } \\
\displaystyle \begin{align*} x = \tan{ \left( u \right) }
\implies dx = \sec^2{ \left(u \right) } \,du
\end{align*} \\
-3\int\frac{1}{\tan^2\left({u}\right)+1}\sec^2{ \left(u \right) } \,du
$$
doesn't this cancel out
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K