MHB What is the inverse of the function f(x)=x^3-3x for different intervals?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2015
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
93
Here is this week's POTW:

-----

Let $f:\mathbb{R}\to\mathbb{R}$ be the function given by $f(x)=x^3-3x$. Calculate $f^{-1}([-2,2]), f^{-1}((2,18)), f^{-1}([2,18)),$ and $f^{-1}([0,2])$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's POTW correctly. Here is my solution:

A plot of the function follows using Desmos. You can adjust it so that it captures all $y$-values from $-2$ to $18$.
[desmos="-10,10,-10,10"]x^3-3*x[/desmos]
From this graph, we can see by inspection that
\begin{align*}
f^{-1}([-2,2])&=[-2,2] \\
f^{-1}((2,18))&=(2,3) \\
f^{-1}([2,18))&=\{-1\}\cup [2,3) \\
f^{-1}([0,2])&=[-\sqrt{3},0]\cup[\sqrt{3},2].
\end{align*}
 
Back
Top