MHB What is the Limit of the Bessel Function as x Goes to Infinity?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
As x approaches infinity, the Bessel function of the first kind, J_n(x), behaves asymptotically like √(2/(πx)) multiplied by the cosine of (x - nπ/2 - π/4). This relationship highlights the oscillatory nature of Bessel functions at large values of x. The discussion emphasizes the importance of understanding asymptotic behavior in mathematical analysis. No responses were provided to the problem of the week, indicating a potential gap in engagement. The solution presented offers a clear mathematical insight into the limit of the Bessel function as x increases.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $n$ be an integer. Show that as $x \to \infty$ on the positive real axis,

$$J_n(x) \sim \sqrt{\frac{2}{\pi x}}\left[\cos\left(x - \frac{n\pi}{2} - \frac{\pi}{4}\right)\right],$$

where $J_n(x)$ is the $n$th order Bessel function of the first kind.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. Here is my solution.

Using the integral representation

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x\sin t - nt)\, dt$$

and Euler's formula, we have $J_n(x) = \frac{1}{2\pi}[I_1(x) + I_2(x)]$ where $I_1(x) = \int_0^\pi e^{ix\sin t - int}\, dt$ and $I_2(x) = \int_0^\pi e^{-ix\sin t + int}\, dt$. Now $I_1(x) = \int_0^\pi f_1(t)e^{ixg_1(t)}\, dt$ with $f_1(t) = e^{int}$ and $g_1(t) = \sin t$. The function $g$ is holomorphic around $[0,\pi]$, maps $\Bbb R$ to $\Bbb R$, and is $C^1[0,\pi]$. Further, the only critical point of $g_1$ is $\pi/2$. Since $g_1^{''}(\pi/2) = -1 < 0$, by the stationary phase theorem,

$$I_1(x) \sim \frac{e^{ixg_1(\pi/2)}\sqrt{2\pi}}{\sqrt{x}\sqrt{-g_1^{''}(\pi/2)}}e^{-\pi i/4}g_1(\pi/2) = \sqrt{\frac{2\pi}{x}}e^{i(x - n\pi/2 - \pi/4)}.$$

Consider $I_2(x) = \int_0^\pi f_2(t)e^{ixg_2(t)}\, dt$, with $f_2(t) = e^{-int}$ and $g_2(t) = -\sin t$. By a similar argument,

$$I_2(x) \sim \frac{e^{ixg_2(\pi/2)}\sqrt{2\pi}}{\sqrt{x}\sqrt{g_2^{''}(\pi/2)}}e^{\pi i/4}g_2(\pi/2) = \sqrt{\frac{2\pi}{x}}e^{-i(x - n\pi/2 - \pi/4)}.$$

Therefore

$$J_n(x) = I_1(x) + I_2(x) \sim \frac{1}{\pi}\cdot \sqrt{\frac{2\pi}{x}}\left[\cos\left(x - \frac{n\pi}{2} - \frac{\pi}{4}\right)\right] = \sqrt{\frac{2}{\pi x}}\left[\cos\left(x - \frac{n\pi}{2} - \frac{\pi}{4}\right)\right].$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K