MHB What is the Limit of the Hankel Determinant in a Matrix Challenge Problem?

  • Thread starter Thread starter MountEvariste
  • Start date Start date
  • Tags Tags
    Determinant Limit
Click For Summary
The discussion revolves around a challenge problem involving the Hankel matrix derived from the trace of a matrix raised to the power of n, specifically for an r x r matrix A with distinct eigenvalues. It establishes that the limit of the absolute value of the determinant of the Hankel matrix H(n) raised to the power of 1/n converges to the product of the absolute values of the eigenvalues as n approaches infinity. The solution utilizes the Newton sum formula to relate the determinant of H(n) to the coefficients of the polynomial whose roots are the eigenvalues. The final conclusion confirms that the limit is indeed equal to the product of the eigenvalues, showcasing the relationship between matrix properties and determinants. The discussion highlights the mathematical rigor involved in proving this result.
MountEvariste
Messages
85
Reaction score
0
Challenge Problem: Let $A$ be an $r \times r$ matrix with distinct eigenvalues $λ_1, . . . , λ_r$. For $n \ge 0$, let $a(n)$ be
the trace of $A^n$. Let $H(n)$ be the $r \times r$ the Hankel matrix with $(i, j)$ entry $a(i + j + n - 2)$. Show that
$ \displaystyle
\lim_{n \to \infty}
\lvert \det H(n) \rvert ^{1/n} =\prod_{k=1}^{r} \lvert \lambda_k \rvert
$.​
 
Last edited:
Mathematics news on Phys.org
June29 said:
Challenge Problem: Let $A$ be an $r \times r$ matrix with distinct eigenvalues $λ_1, . . . , λ_r$. For $n \ge 0$, let $a(n)$ be
the trace of $A_n$. Let $H(n)$ be the $r \times r$ the Hankel matrix with $(i, j)$ entry $a(i + j + n - 2)$. Show that
$$\lim_{n \to \infty} \lvert \det H(n) \rvert ^{1/n} =\prod_{k=1}^{r} \lvert \lambda_k \rvert .$$
I'm assuming that $A_n$ in the statement of the problem should be $A^n$.
[sp]Since $A$ has distinct eigenvalues, it is diagonalizable. So its trace is $\lambda_1 + \ldots + \lambda_r$ and the trace of $A^n$ is $a(n) = \lambda_1^n + \ldots + \lambda_r^n$.

Let $x^r + c_1x^{r-1} + \ldots + c_{r-1}x + c_r = 0$ be the equation whose roots are $\lambda_1, \ldots, \lambda_r$. Apply the Newton sum formula $a(k) + c_1a(k-1) + \ldots + c_ra(k-r) = 0$ to each element of the final column of $H(n)$ (where $n>r$) to get $$\begin{aligned}\det H(n) &= \begin{vmatrix}a(n) & a(n+1) & \ldots & a(n+r-2) & a(n+r-1) \\ a(n+1) & a(n+2) & \ldots & a(n+r-1) & a(n+r) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a(n+r-1) & a(n+r) & \ldots & a(n+2r-3) & a(n + 2r-2) \end{vmatrix} \\ \\ &= \begin{vmatrix}a(n) & a(n+1) & \ldots & a(n+r-2) & -c_1a(n+r-2) - \ldots - c_{r-1}a(n) - c_ra(n-1) \\ a(n+1) & a(n+2) & \ldots & a(n+r-1) & -c_1a(n+r-1) - \ldots - c_{r-1}a(n+1) - c_ra(n) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a(n+r-1) & a(n+r) & \ldots & a(n+2r-3) & -c_1a(n+2r-3) - \ldots - c_{r-1}a(n+r-1) - c_ra(n+r-2) \end{vmatrix}. \end{aligned}$$ For each $k$ with $1\leqslant k\leqslant r-1$, add $c_{r-k}$ times the $k$th column of that determinant to the last column, giving $$\det H(n) = -c_r\begin{vmatrix}a(n) & a(n+1) & \ldots & a(n+r-2) & a(n-1) \\ a(n+1) & a(n+2) & \ldots & a(n+r-1) & a(n) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a(n+r-1) & a(n+r) & \ldots & a(n+2r-3) & a(n + r-2) \end{vmatrix}.$$ But that determinant is just $\det H(n-1)$ with the first column shifted all the way to the right. This shows that $\det H(n) = \pm c_r\det H(n-1)$. By induction, $\det H(n) = \pm c_r^{n-r}\det H(r)$.

Therefore $$|\det H(n)|^{1/n} = |c_r|\left|\frac{\det H(r)}{c_r^r}\right|^{1/n} \to |c_r|$$ as $n\to\infty$. But $c_r$ is $\pm$ the product of the roots of the equation $x^r + c_1x^{r-1} + \ldots + c_{r-1}x + c_r = 0$, namely $$\prod_{k=1}^r\lambda_k.$$ So $$\lim_{n\to\infty}|\det H(n)|^{1/n} = \prod_{k=1}^r|\lambda_k|$$, as required.

[/sp]
 
Opalg said:
...
Thanks for such a beautiful solution! (Bow)

Yeah, indeed I meant $A^n$. Fixed now.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 69 ·
3
Replies
69
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 125 ·
5
Replies
125
Views
19K
  • · Replies 86 ·
3
Replies
86
Views
13K
  • · Replies 102 ·
4
Replies
102
Views
11K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 93 ·
4
Replies
93
Views
15K
  • · Replies 67 ·
3
Replies
67
Views
11K
  • · Replies 39 ·
2
Replies
39
Views
13K