What is the Limit of the Hankel Determinant in a Matrix Challenge Problem?

  • Context: MHB 
  • Thread starter Thread starter MountEvariste
  • Start date Start date
  • Tags Tags
    Determinant Limit
Click For Summary
SUMMARY

The limit of the Hankel determinant for an $r \times r$ matrix $A$ with distinct eigenvalues $\lambda_1, \ldots, \lambda_r$ is established as follows: $$\lim_{n \to \infty} |\det H(n)|^{1/n} = \prod_{k=1}^{r} |\lambda_k|.$$ The trace of the matrix raised to the power $n$, denoted as $a(n)$, is derived from the eigenvalues, leading to the application of the Newton sum formula to express the determinant of the Hankel matrix $H(n)$. The proof confirms that the determinant's growth rate is directly related to the product of the eigenvalues.

PREREQUISITES
  • Understanding of eigenvalues and eigenvectors in linear algebra.
  • Familiarity with Hankel matrices and their properties.
  • Knowledge of the Newton sum formula for sequences.
  • Experience with matrix determinants and their asymptotic behavior.
NEXT STEPS
  • Study the properties of Hankel matrices and their applications in numerical analysis.
  • Learn about the Newton sum formula and its implications in polynomial roots.
  • Explore the relationship between eigenvalues and matrix determinants in more complex matrices.
  • Investigate asymptotic analysis techniques for determinants in linear algebra.
USEFUL FOR

Mathematicians, researchers in linear algebra, and students studying matrix theory who are interested in eigenvalue problems and determinant properties.

MountEvariste
Messages
85
Reaction score
0
Challenge Problem: Let $A$ be an $r \times r$ matrix with distinct eigenvalues $λ_1, . . . , λ_r$. For $n \ge 0$, let $a(n)$ be
the trace of $A^n$. Let $H(n)$ be the $r \times r$ the Hankel matrix with $(i, j)$ entry $a(i + j + n - 2)$. Show that
$ \displaystyle
\lim_{n \to \infty}
\lvert \det H(n) \rvert ^{1/n} =\prod_{k=1}^{r} \lvert \lambda_k \rvert
$.​
 
Last edited:
Physics news on Phys.org
June29 said:
Challenge Problem: Let $A$ be an $r \times r$ matrix with distinct eigenvalues $λ_1, . . . , λ_r$. For $n \ge 0$, let $a(n)$ be
the trace of $A_n$. Let $H(n)$ be the $r \times r$ the Hankel matrix with $(i, j)$ entry $a(i + j + n - 2)$. Show that
$$\lim_{n \to \infty} \lvert \det H(n) \rvert ^{1/n} =\prod_{k=1}^{r} \lvert \lambda_k \rvert .$$
I'm assuming that $A_n$ in the statement of the problem should be $A^n$.
[sp]Since $A$ has distinct eigenvalues, it is diagonalizable. So its trace is $\lambda_1 + \ldots + \lambda_r$ and the trace of $A^n$ is $a(n) = \lambda_1^n + \ldots + \lambda_r^n$.

Let $x^r + c_1x^{r-1} + \ldots + c_{r-1}x + c_r = 0$ be the equation whose roots are $\lambda_1, \ldots, \lambda_r$. Apply the Newton sum formula $a(k) + c_1a(k-1) + \ldots + c_ra(k-r) = 0$ to each element of the final column of $H(n)$ (where $n>r$) to get $$\begin{aligned}\det H(n) &= \begin{vmatrix}a(n) & a(n+1) & \ldots & a(n+r-2) & a(n+r-1) \\ a(n+1) & a(n+2) & \ldots & a(n+r-1) & a(n+r) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a(n+r-1) & a(n+r) & \ldots & a(n+2r-3) & a(n + 2r-2) \end{vmatrix} \\ \\ &= \begin{vmatrix}a(n) & a(n+1) & \ldots & a(n+r-2) & -c_1a(n+r-2) - \ldots - c_{r-1}a(n) - c_ra(n-1) \\ a(n+1) & a(n+2) & \ldots & a(n+r-1) & -c_1a(n+r-1) - \ldots - c_{r-1}a(n+1) - c_ra(n) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a(n+r-1) & a(n+r) & \ldots & a(n+2r-3) & -c_1a(n+2r-3) - \ldots - c_{r-1}a(n+r-1) - c_ra(n+r-2) \end{vmatrix}. \end{aligned}$$ For each $k$ with $1\leqslant k\leqslant r-1$, add $c_{r-k}$ times the $k$th column of that determinant to the last column, giving $$\det H(n) = -c_r\begin{vmatrix}a(n) & a(n+1) & \ldots & a(n+r-2) & a(n-1) \\ a(n+1) & a(n+2) & \ldots & a(n+r-1) & a(n) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a(n+r-1) & a(n+r) & \ldots & a(n+2r-3) & a(n + r-2) \end{vmatrix}.$$ But that determinant is just $\det H(n-1)$ with the first column shifted all the way to the right. This shows that $\det H(n) = \pm c_r\det H(n-1)$. By induction, $\det H(n) = \pm c_r^{n-r}\det H(r)$.

Therefore $$|\det H(n)|^{1/n} = |c_r|\left|\frac{\det H(r)}{c_r^r}\right|^{1/n} \to |c_r|$$ as $n\to\infty$. But $c_r$ is $\pm$ the product of the roots of the equation $x^r + c_1x^{r-1} + \ldots + c_{r-1}x + c_r = 0$, namely $$\prod_{k=1}^r\lambda_k.$$ So $$\lim_{n\to\infty}|\det H(n)|^{1/n} = \prod_{k=1}^r|\lambda_k|$$, as required.

[/sp]
 
Opalg said:
...
Thanks for such a beautiful solution! (Bow)

Yeah, indeed I meant $A^n$. Fixed now.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 69 ·
3
Replies
69
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 125 ·
5
Replies
125
Views
20K
  • · Replies 86 ·
3
Replies
86
Views
14K
  • · Replies 102 ·
4
Replies
102
Views
11K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 93 ·
4
Replies
93
Views
15K
  • · Replies 67 ·
3
Replies
67
Views
11K
  • · Replies 39 ·
2
Replies
39
Views
13K