Challenge Math Challenge - April 2021

Click For Summary
The Math Challenge for April 2021 covers various advanced topics, including differential equations, linear algebra, topology, and number theory. Key problems discussed include solving an orbital period equation for a planet, proving properties of positive definite matrices, and exploring the implications of antipodal maps in topology. Participants also tackled integrals over geometric shapes and properties of polynomials and determinants. The discussions highlight the complexity and interconnectivity of mathematical concepts, showcasing problem-solving techniques and theoretical proofs.
  • #101
fresh_42 said:
statement one:
Show that all Pythagorean triples ##x^2 + y^2 = z^2## can be found by
##(x, y , z) = (u^2 - v^2, 2uv, u^2 + v^2)## with ##u, v \in \mathbb{N} , u > v##

Sorry again, I am lost. I was able to find a way by which any primitive Pythagorean triple can be expressed as ##(u^2 - v^2, 2uv, u^2 + v^2)## with ##u, v \in \mathbb{N}## and that part of the proof was accepted, but I am unable to understand how and why all non-primitive triples should be expressible the same way. I take the same example of non-primitive Pythagorean triple as in an earlier reply, ##(9, 12, 15)##. Since 12 is the only even number in this triple, only it can be expressed as ##2uv## for some natural numbers ##u,v##. That leaves 9 to be expressed as ##u^2 - v^2##. The possible solutions for ##12 = 2uv## are ##(u=1, v=6)##, ##(u=2, v=3)##, ##(u=3, v=2)##, ##(u=6, v=1)##. In none of these solutions do I get ##u^2 - v^2 = 9##. In other words, ##(9, 12, 15)## appears to be a counterexample for ##(x, y , z) = (u^2 - v^2, 2uv, u^2 + v^2)##. What am I missing?
 
Physics news on Phys.org
  • #102
Not anonymous said:
Sorry again, I am lost. I was able to find a way by which any primitive Pythagorean triple can be expressed as ##(u^2 - v^2, 2uv, u^2 + v^2)## with ##u, v \in \mathbb{N}## and that part of the proof was accepted, but I am unable to understand how and why all non-primitive triples should be expressible the same way. I take the same example of non-primitive Pythagorean triple as in an earlier reply, ##(9, 12, 15)##. Since 12 is the only even number in this triple, only it can be expressed as ##2uv## for some natural numbers ##u,v##. That leaves 9 to be expressed as ##u^2 - v^2##. The possible solutions for ##12 = 2uv## are ##(u=1, v=6)##, ##(u=2, v=3)##, ##(u=3, v=2)##, ##(u=6, v=1)##. In none of these solutions do I get ##u^2 - v^2 = 9##. In other words, ##(9, 12, 15)## appears to be a counterexample for ##(x, y , z) = (u^2 - v^2, 2uv, u^2 + v^2)##. What am I missing?
You are right. I made a mistake (sloppy translation). It should have been ... of the form ##d\cdot (u^2-v^2,2uv,u^2+v^2)## ...

I apologize for that negligence, @Not anonymous.
 
  • #103
fresh_42 said:
I apologize for that negligence, @Not anonymous.
No problem (problem ≠ math problem in this context :oldsmile:). Thanks to you as always for promptly reviewing my answers and patiently explaining what I may have missed or got wrong. :bow:
 
  • Like
Likes fresh_42

Similar threads

2
Replies
61
Views
11K
Replies
42
Views
10K
2
Replies
93
Views
15K
3
Replies
100
Views
11K
2
Replies
86
Views
13K
2
Replies
56
Views
10K
3
Replies
114
Views
11K
2
Replies
67
Views
11K
2
Replies
60
Views
12K
2
Replies
61
Views
12K