What is the magnitude of the induced EMF?

Click For Summary
The discussion centers on calculating the induced electromotive force (EMF) and the confusion surrounding the relevant equations. It emphasizes that EMF depends on the rate of change of magnetic flux, not the flux itself, and clarifies that in this scenario, the magnetic field (B) is constant while the area (A) changes. Participants suggest a step-by-step approach to derive the area as a function of time and then calculate the rate of change of flux. The conversation concludes with one participant expressing gratitude for the guidance received. Understanding the relationship between B and A is crucial for accurate EMF calculations.
hidemi
Messages
206
Reaction score
36
Homework Statement
A rectangular wire loop (length = 60 cm, width = 40 cm) lies completely within a perpendicular and uniform magnetic field of magnitude of 0.5 T. If the length of the loop starts increasing at a rate of 20 mm/s at time t= 0, while the width is decreasing at the same rate, what is the magnitude of the inducede mf at time t= 4.0 s?
a.6.8 mV
b.5.2 mV
c.3.6 mV
d.8.4 mV
e.10 mV

Answer: C
Relevant Equations
dΦB/dt = dB/dt*A
I did the question in this way as attached. I got the crrect answer, but I feel unsure if it is the right way of doing it.
 

Attachments

  • 1.jpg
    1.jpg
    39.3 KB · Views: 207
Last edited:
Physics news on Phys.org
According to your equation there, Emf depends on the rate of change of flux, not on the flux itself.

So, where is the rate of change greatest? It helps to picture the sin or cos graph.
 
rsk said:
According to your equation there, Emf depends on the rate of change of flux, not on the flux itself.

So, where is the rate of change greatest? It helps to picture the sin or cos graph.
I typed the wrong question. I just edited and saved the question just now, could you read it again? thanks
 
I'd suggest you first compute the flux and later on, the derivative. You've made a mistake.
 
hidemi said:
Relevant Equations:: dΦB/dt = dB/dt*A
You mean dΦ/dt = dB/dt*A. This applies when B is changing and A is constant. But in this question B is constant and A changing. So the equation is irrelevant.

Try working through these steps.

1. Write an equation for the length (in metres) as a function of time (in seconds).

2. Similarly for width.

3. Using the above, write an expression for the area (in square metres) as a function of time.

4. Since the field is perpendicular to the plane of the loop ##\phi = BA##. Write an expression for ##\frac {d\Phi}{dt}## assuming both B and A are functions of time (use the product rule).

In this question B is constant and A is a function of time. So what is ##\frac {d\Phi}{dt}##?

See if you can take it from there.
 
  • Like
Likes hidemi and Delta2
Steve4Physics said:
You mean dΦ/dt = dB/dt*A. This applies when B is changing and A is constant. But in this question B is constant and A changing. So the equation is irrelevant.

Try working through these steps.

1. Write an equation for the length (in metres) as a function of time (in seconds).

2. Similarly for width.

3. Using the above, write an expression for the area (in square metres) as a function of time.

4. Since the field is perpendicular to the plane of the loop ##\phi = BA##. Write an expression for ##\frac {d\Phi}{dt}## assuming both B and A are functions of time (use the product rule).

In this question B is constant and A is a function of time. So what is ##\frac {d\Phi}{dt}##?

See if you can take it from there.
I got it. Thank you so much.
 
  • Like
Likes Steve4Physics
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 41 ·
2
Replies
41
Views
8K
  • · Replies 7 ·
Replies
7
Views
663
Replies
4
Views
838
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K