MHB What is the minimum perimeter of a triangle with given vertices?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
The discussion centers on determining the minimum perimeter of a triangle with one vertex at the point (a,b), where 0 < b < a, another vertex on the x-axis, and the third on the line y=x. The problem is recognized as Problem B-2 from the 1998 William Lowell Putnam Mathematical Competition. Participants share their solutions, with Opalg and IanCg receiving congratulations for their correct answers. Opalg also contributed a visual representation of the solution using TikZ. The thread emphasizes the importance of understanding the geometric relationships involved in minimizing the triangle's perimeter.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Given a point $(a,b)$ with $0<b<a$, determine the minimum perimeter of a triangle with one vertex at $(a,b)$, one on the $x$-axis, and one on the line $y=x$. You may assume that a triangle of minimum perimeter exists.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 245 - Dec 19, 2016

This was Problem B-2 in the 1998 William Lowell Putnam Mathematical Competition.

Congratulations to Opalg and IanCg for their correct solutions. Here is Opalg's solution: $+1$ for cool TikZ picture.

[TIKZ]\coordinate (X) at (5,1.5) ;\coordinate [label=left: $A$] (A) at (2,2) ;\coordinate [label=below left: $B$] (B) at (3.25,0) ;\draw (-0.5,0) -- (5.5,0) ;\draw (0,-1.5) -- (0,5.5) ;\draw (0,0) -- (5,5) ;\draw (B) -- (X) -- (1.5,5) -- (A) -- (B) -- (5,-1.5) -- (X) -- (A) ;\draw (6,1.5) node {$P = (a,b)$} ;\draw (6.25,-1.5) node {$Y = (a,-b)$} ;\draw (2,5.25) node {$X = (b,a)$} ;\draw [blue,dashed] (1.5,5) -- (5,-1.5) ;\draw [red] (X) -- (2.725,2.725) -- (4.2,0) -- cycle ;[/TIKZ]​
Let $P = (a,b)$ be the given point. Let $X = (b,a)$ be the reflection of $P$ in the line $y=x$, and let $Y = (a,-b)$ be the reflection of $P$ in the $x$-axis. Let $A$ be a point on $y=x$ and let $B$ be a point on the $x$-axis.

The triangles $PAX$ and $PBY$ are isosceles, so that $PA = AX$ and $PB = BY$. Therefore the perimeter of the triangle $PAB$ is the sum of the lengths $XA$, $AB$, $BY$. This is obviously minimised when $XABY$ is a straight line.

So move $A$ and $B$ to the points on their respective lines where these lines intersect the line $XY$. The corresponding triangle (shown in red in the diagram) will be the one with minimal perimeter. This perimeter is the distance $d$ from $X$ to $Y$, given by $d^2 = (b-a)^2 + (a+b)^2 = 2(a^2 + b^2)$.

Conclusion: the minimal perimeter is $\sqrt{2(a^2+b^2)}$.