What is the Power Delivered by the Person Pulling the Rope?

  • Thread starter Thread starter glockstock
  • Start date Start date
  • Tags Tags
    Power Work
Click For Summary
SUMMARY

The discussion focuses on calculating the power delivered by a person pulling a rope to lift a 6.1-kg box using a frictionless pulley. For part (a), the power at a constant speed of 2.0 m/s is determined to be 0.120 kW. In part (b), the average power during constant acceleration from rest to a height of 1.4 m in 0.42 seconds requires considering both the force of gravity and the net force exerted by the person. The correct approach involves calculating the total force needed to overcome gravity and achieve the desired acceleration, followed by using the average velocity to find the average power.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with kinematic equations
  • Knowledge of power calculations (P = F * v)
  • Basic concepts of gravitational force and acceleration
NEXT STEPS
  • Study the application of kinematic equations in dynamics
  • Learn how to calculate net force in systems with multiple forces
  • Explore the relationship between work, energy, and power in physics
  • Investigate the effects of friction and pulley systems on mechanical advantage
USEFUL FOR

Students studying physics, particularly those focusing on mechanics, as well as educators seeking to clarify concepts of power, force, and motion in practical applications.

glockstock
Messages
5
Reaction score
0

Homework Statement


A 6.1-kg box is being lifted by means of a light rope that is threaded through a single, light, frictionless pulley that is attached to the ceiling.

(a) If the box is being lifted at a constant speed of 2.0 m/s, what is the power delivered by the person pulling on the rope?

(b) If the box is lifted, at constant acceleration, from rest on the floor to a height of 1.4 m above the floor in 0.42 s, what average power is delivered by the person pulling on the rope?


Homework Equations


P = F * v
KE = .5mv^2
W = F * distance
W = KE

The Attempt at a Solution


I've answered the first problem, getting .120 kW as an answer. But I'm having trouble with the (b), and maybe the concept of average power is throwing me off. I don't know what to do with the time given (0.42 s) and the height (1.4 m)...I know power is KE/T, but I don't know what the velocity is in KE since no acceleration was given. Thanks for your help! Much appreciated.
 
Physics news on Phys.org
If the box is lifted at constant acceleration from rest, you can find the acceleration using the kinematic equation for x(t).
 
Last edited:
OK, so using the kinematic equation I've found the acceleration to be 15.87 m/s^2...do I use another kinematic equation to find a velocity, and use F=ma with the mass of the box (6.1kg) and my acceleration (15.87) to get a force of 96.81N, then multiply that by the velocity for power? Or do I have to consider the force of gravity too, and subtract that force from the 96.81N...
 
You need to consider the force of gravity. F = ma gives you the net force not the force the person is exerting on the box. Once you find the force exerted by the person, you need to multiply by the average velocity to get average power.
 
P=Fv=ma(vavg)
SOLVE FOR a:
h=\frac{1}{2}at2

PLUG IN a and SOLVE FOR vavg (which is v/2):
v2=2ah​
 
Last edited:
Rubber Band said:
P=Fv=ma(vavg)


SOLVE FOR a:
h=\frac{1}{2}at2

PLUG IN a and SOLVE FOR vavg (which is v/2):
v2=2ah​


The power that Rubber Band proposes as the answer is not the power delivered by the person. It is the power delivered by the net force. The person has to deliver enough power to do two things, overcome gravity and accelerate the box. The tension in the rope is equal and opposite to the force the person exerts. Therefore, the power delivered by the rope is the same as the tension. When a rope accelerates a bucket up (or down), the tension is not ma.
 

Similar threads

  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
7K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
4K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K