What is the Probability of Events A and B Occurring Simultaneously?

  • Thread starter Thread starter crays
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
To find the probability of events A and B occurring simultaneously (P(A intersect B)), the discussion outlines that P(A or B but not both) can be expressed as P(A) + P(B) - 2P(A intersect B). Given P(A) = 1/2, P(B) = 1/4, and P(A or B but not both) = 1/3, the equation can be set up as 1/3 = 1/2 + 1/4 - 2P(A intersect B). Solving this equation leads to the determination of P(A intersect B). The use of Venn diagrams is suggested for better visualization of the relationships between the events. The discussion emphasizes the importance of correctly applying probability rules to find the intersection of events A and B.
crays
Messages
160
Reaction score
0
Events A and B are events such that

P(A) = 1/2
P(B) = 1/4
P(A or B but not both) = 1/3.

Find P(A intersect B)

so far what i have in mind is that , for A to happens, it need to be 1/3 x 1/2 which is 1/6
and for B to happens, it need to be 1/4 x 1/3 which is 1/12. Then I'm stuck here, not sure how should i find the intersect point. Please help.
 
Physics news on Phys.org
I'm not sure what you mean by "for A to happens, it need to be 1/3 x 1/2". Do you mean the probability that A happens is 1/6? No, you have already said that the probability that A happens is 1/2 alone.

Think about this simplified scenario: A contains 6 objects, 2 of which are also in B, and B contains 5 objects. |A|= 6, |B|= 5, |A intersect B|= 2. How many objects are in A union B (in "A or B")? If we just add |A|+ |B|= 11, that's two large because we are counting objects in A intersect B twice, once in A and once in B. There are |A|+ |B|- |A intersect B|= 6+ 5- 2= 9 objects in A union B. That's were we get the rule P(A union B)= P(A)+ P(B)- P(A intersect B). Now, to get the number of objects in "A or B but not both" we just subtract A intersect B again: 9- 2= 7.
Yes, that is correct: there are 6- 2= 4 objects in "A but not B", 5- 2= 3 objects in "B but not A" and so 4+ 3= 7 objects in A or B but not Both. The number of objects in A or B but not Both is |A|+ |B|- 2|A intersect B|.

Converting that to probability requires only dividing through by the total number of objects so: P(A or B but not both)= P(A)+ P(B)- 2P(A intersect B).

P(A or B but not both)= 1/3= 1/2+ 1/4- 2P(A intersect B).

Solve for P(A intersect B).
 
crays said:
Events A and B are events such that

P(A) = 1/2
P(B) = 1/4
P(A or B but not both) = 1/3.

Find P(A intersect B)
P(A or B but not both) = P(A or B) - P(A and B)
P(A or B) = P(A) + P(B) - P(A and B)
P(A or B) - P(A and B) = P(A) + P(B) - 2P(A and B)

I think you can continue from here.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
6
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
2K