Let's generalize and say the dartboard is an $n$-gon. Consider an n-gon whose sides are 2 units in length. This regular polygon may be deconstructed into $n$ isosceles triangles. We take one of these triangles, bisect it and orient it in the Cartesian plane as in the diagram:
https://www.physicsforums.com/attachments/395
We have:
$\displaystyle \theta=\frac{\pi}{n}$ where $\displaystyle 2<n\in\mathbb{N}$
$\displaystyle h=\cot(\theta)$
The curve in red represents the locus of points equidistant from the upper vertex and the base. We know this curve must be parabolic by the definition of a parabola, and we may find the equation representing it as follows:
$\displaystyle x^2+(y-h)^2=y^2$
$\displaystyle x^2+y^2-2hy+h^2=y^2$
$\displaystyle y=\frac{x^2+h^2}{2h}$
The side of the triangle drawn in green coincides with the line given by:
$\displaystyle y=-hx+h$
Next, we determine the quadrant I x-coordinate where the parabola and the line intersect:
$\displaystyle \frac{x^2+h^2}{2h}=-hx+h$
$\displaystyle x^2+2h^2x-h^2=0$
Taking the positive root, we find by the quadratic formula:
$\displaystyle x_a=\frac{-2h^2+\sqrt{4h^4+4h^2}}{2}=-h^2+h\sqrt{h^2+1}=h(\sqrt{h^2+1}-h)$
Now, to find the area of the region of the triangle above the parabola, we use:
$\displaystyle \int_0^{x_a}(-hx+h)-\left(\frac{x^2+h^2}{2h} \right)\,dx=\frac{1}{2h}\int_0^{x_a} h^2-2h^2x-x^2\,dx$
Dividing this by the area of the triangle $\displaystyle \frac{h}{2}$, we obtain:
$\displaystyle P=\frac{1}{h^2}\int_0^{x_a} h^2-2h^2x-x^2\,dx=\int_0^{x_a} 1-2x-\frac{1}{h^2}x^2\,dx=$
$\displaystyle \left[x-x^2-\frac{1}{3h^2}x^3 \right]_0^{x_a}=x_a-x_a^2-\frac{1}{3h^2}x_a^3$
Recall, we have:
$\displaystyle x_a=h\left(\sqrt{h^2+1}-h \right)=\cot(\theta)\left(\sqrt{\cot^2(\theta )+1}-\cot(\theta) \right)=\cot(\theta)(\csc(\theta)-\cot(\theta))=$
$\displaystyle \cot(\theta)\frac{1-\cos(\theta)}{\sin(\theta)}=\cos(\theta)\frac{1-\cos(\theta)}{1-\cos^2(\theta)}=\frac{\cos(\theta)}{\cos(\theta)+1}$
$\displaystyle x_a^2=\frac{\cos^2(\theta)}{(\cos(\theta)+1)^2}$
$\displaystyle \frac{1}{3h^2}x_a^3=\frac{1}{3}\tan^2(\theta)\frac{\cos^3(\theta)}{(\cos(\theta)+1)^3}=\frac{\sin^2(\theta)\cos(\theta)}{3(\cos(\theta)+1)^3}=\frac{ \cos(\theta)(1-\cos(\theta))}{3(\cos(\theta)+1)^2}$
Thus, we have:
$\displaystyle x_a-x_a^2-\frac{1}{3h^2}x_a^3=$
$\displaystyle \frac{3\cos(\theta)(\cos(\theta)+1)-3\cos^2(\theta)-\cos(\theta)(1-\cos(\theta))}{3(\cos(\theta)+1)^2}=$
$\displaystyle \frac{\cos(\theta)(\cos(\theta)+2)}{3(\cos(\theta)+1)^2}$
And since $\displaystyle \theta=\frac{\pi}{n}$ we have:
$\displaystyle P(n)=\frac{\cos(\frac{\pi}{n})(\cos(\frac{\pi}{n})+2)}{3(\cos(\frac{\pi}{n})+1)^2}$
Now, since the problem gave $n = 4$, we find:
$\displaystyle P(4)=\frac{\cos(\frac{\pi}{4})(\cos(\frac{\pi}{4})+2)}{3(\cos(\frac{\pi}{4})+1)^2}=\frac{4\sqrt{2}-5}{3}\approx0.21895141649746$