What is the relationship between entropy and pressure in thermodynamics?

happyparticle
Messages
490
Reaction score
24
Homework Statement
Derive ##(\frac{\partial H}{\partial P})_t## in term of ##P,V,T, \beta, \kappa, c_p##
Let H = H(T,P)
Relevant Equations
##ds = (\frac{\partial S}{\partial H})_p dH + (\frac{\partial S}{ \partial P})_H dP##

##dH = (\frac{\partial H}{\partial T})_p dT + (\frac{\partial H}{ \partial P})_T dP##
Hi,
Starting from dS in term of H and P, I'm trying to find ##(\frac{\partial H}{\partial P})_t## in term of ##P,V,T, \beta, \kappa, c_p##.
Here what I did so far.

##ds = (\frac{\partial S}{\partial H})_p dH + (\frac{\partial S}{ \partial P})_H dP##

##ds = (\frac{\partial S}{\partial H})_p [ (\frac{\partial H}{\partial T})_p dT + (\frac{\partial H}{ \partial P})_T dP] + (\frac{\partial S}{ \partial P})_H dP##

##\frac{\partial S}{\partial P} = (\frac{\partial S}{\partial H})_p (\frac{\partial H}{\partial T}) (\frac{\partial T}{\partial P}) + (\frac{\partial H}{\partial P})_T (\frac{\partial S}{\partial H})_P + (\frac{\partial S}{\partial P})_H##

##(\frac{\partial S^2}{\partial T \partial P}) = (\frac{\partial S}{\partial H})_p (\frac{\partial H}{\partial T}) (\frac{\partial T}{\partial P}) + (\frac{\partial H}{\partial P})_T (\frac{\partial S}{\partial H})_P + \frac{d}{dP}(\frac{\partial S}{\partial P})_H##

##(\frac{\partial H}{\partial P})_T = -(\frac{\partial H}{\partial S})_P (\frac{\partial S}{\partial H})_P (\frac{\partial H}{\partial T})(\frac{\partial T}{\partial P})##

From there, I'm stuck. I don't see how I can get ##P,V,T, \beta, \kappa, c_p##

Thank you
 
Physics news on Phys.org
Start with the exact differential dG=-SdT+VdP, which means that $$\left(\frac{\partial S}{\partial P}\right)_T=-\left(\frac{\partial V}{\partial T}\right)_P$$
 
I have to start with ds in term of dh and dp.
I just saw in the original post, those P should be in index.

I finally found something using ##Tds = dh - vdp##
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top