cabraham
- 1,181
- 90
Regarding the latest questions, my response is verified in many textbooks, which anyone can obtain. The "coupling coefficient" can be called "k". If k12 represents the coupling *from 1 to 2*, and k21 represents coupling from 2 to 1, then the overall coupling is given by:
k = sqrt (k12*k21).
As far as the coax cable goes, I don't think that the shield is a shorted turn. If we sketch an iron core xfmr, add a shorted secondary turn, and examine the direction of the core flux, we will see that the shorted turn is oriented normal to the flux. But the coax shield is along the flux of the center conductor, not normal.
The mutual inductance Lm, does equal the shield self inductance Ls, and Henry Ott of Bell Labs derives this relation in his highly acclaimed book "Noise Reduction Techniques In Electronic Systems". This is true for a general coaxial cable. When we say "in general" I presume that coax cable is under discussion. If "in general" refers to other configurations besides coax, then different relations are encountered.
In general, if 2 coils mutually interact, then k = sqrt (k12*k21), and Lm = k*sqrt(L1*L2). This can be derived but it is involved. An advanced fields text might have the derivation with illustrations. With grad school I have no time to derive it. Maybe in June when things slow down I might have time. Best regards.
Claude
k = sqrt (k12*k21).
As far as the coax cable goes, I don't think that the shield is a shorted turn. If we sketch an iron core xfmr, add a shorted secondary turn, and examine the direction of the core flux, we will see that the shorted turn is oriented normal to the flux. But the coax shield is along the flux of the center conductor, not normal.
The mutual inductance Lm, does equal the shield self inductance Ls, and Henry Ott of Bell Labs derives this relation in his highly acclaimed book "Noise Reduction Techniques In Electronic Systems". This is true for a general coaxial cable. When we say "in general" I presume that coax cable is under discussion. If "in general" refers to other configurations besides coax, then different relations are encountered.
In general, if 2 coils mutually interact, then k = sqrt (k12*k21), and Lm = k*sqrt(L1*L2). This can be derived but it is involved. An advanced fields text might have the derivation with illustrations. With grad school I have no time to derive it. Maybe in June when things slow down I might have time. Best regards.
Claude
Last edited: