MHB What is the solution to POTW #265 - Feb 13, 2018?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
The discussion centers on the Problem of the Week (POTW) #265, which involves proving the relationship between the function F(α, β) and its variables. The key result to demonstrate is that F(α, β) divided by F(β, α) equals α³/β³, with a specific condition on α and β to avoid certain integer values. The original post was corrected to include this necessary condition for clarity. Opalg provided a correct solution, which is acknowledged in the thread. The conversation highlights the importance of precise conditions in mathematical proofs.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $F : (0, \infty)\times (0,\infty) \to \Bbb R$ be given by
$$F(\alpha, \beta) = \int_0^\infty \frac{\cos(\alpha x)}{x^4 + \beta^4}\, dx$$ Show that $$\frac{F(\alpha,\beta)}{F(\beta,\alpha)} = \frac{\alpha^3}{\beta^3}$$ as long as there is no positive integer $n$ such that $\alpha = \dfrac{(4n-1)\pi\sqrt{2}}{4\beta}$.-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Last edited:
Physics news on Phys.org
Hi MHB community,

In the original posting of this week’s POTW I accidentally left out a necessary condition on $\alpha$ and $\beta$. I have made the correction.
 
Congratulations to Opalg for his correct solution. You can read his solution below.
Let $$J = \oint_D\frac{e^{i\alpha z}}{z^4 + \beta^4}dz$$, where $D$ is the usual contour consisting of the interval $[-R,R]$ of the real axis, and the semicircle form $R$ to $-R$ taken anticlockwise in the upper half-plane. In the limit, as $R\to\infty$, the integral round the semicircle goes to $0$ by Jordan's lemma; and the integral along the axis becomes $$\int_{-\infty}^\infty \frac{\cos(\alpha x) + i\sin(\alpha x)}{x^4 + \beta^4}dx = 2\int_0^\infty \frac{\cos(\alpha x)}{x^4 + \beta^4}dx $$ (because $\cos(\alpha x)$ is an even function and $\sin(\alpha x)$ is an odd function). So $J = 2F(\alpha,\beta)$.

The function $$ \frac{e^{i\alpha z}}{z^4 + \beta^4}$$ has two simple poles inside $D$, at the points $\beta\omega$ and $\beta\omega^3$, where $\omega = e^{i\pi/4} = \dfrac{1+i}{\sqrt2}$.

The formula for the residue of a quotient of two analytic functions at a simple zero of the denominator says that the residue of $$ \frac{e^{i\alpha z}}{z^4 + \beta^4}$$ at such a point is $$ \frac{e^{i\alpha z}}{4z^3}$$. So the residues at $z = \beta\omega$ and $z = \beta\omega^3$ are $$\operatorname{Res}(\beta\omega) = \frac{e^{i\alpha\beta\omega}}{4\beta^3\omega^3} = \frac{-ie^{i\alpha\beta\omega}}{4\beta^3\omega}, \qquad \operatorname{Res}(\beta\omega^3) = \frac{e^{i\alpha\beta\omega^3}}{4\beta^3\omega^9} = \frac{e^{-\alpha\beta\omega}}{4\beta^3\omega}.$$ It follows from Cauchy's theorem that $$2F(\alpha,\beta) = \frac{2\pi i}{4\beta^3\omega}\bigl(-ie^{i\alpha\beta\omega} + e^{-\alpha\beta\omega}\bigr).$$

If $\alpha$ and $\beta$ are interchanged then the only effect on that last expression is that the $\beta^3$ in the denominator becomes $\alpha^3$. It follows that $\dfrac{F(\alpha,\beta)}{F(\beta,\alpha)} = \dfrac{\alpha^3}{\beta^3}.$

The only thing that can go wrong with that is that $F(\alpha,\beta)$ might be zero. In that case, $F(\beta,\alpha)$ will also be zero, and their quotient will not be defined. So we need to investigate the possibility that $ie^{i\alpha\beta\omega} = e^{-\alpha\beta\omega}$.

The exponential function has period $2\pi i$. So two complex numbers will have the same exponential if they differ by an integer multiple of $2\pi i$. But $ie^{i\alpha\beta\omega} = e^{i\pi/2}e^{i\alpha\beta\omega} = e^{i(\alpha\beta\omega + \pi/2)}$. Thus the condition for the result to fail is $$i(\alpha\beta\omega + \tfrac\pi2) = -\alpha\beta\omega + 2n\pi i = i^2\alpha\beta\omega + 2n\pi i,$$ $$\alpha\beta\omega + \tfrac\pi2 = i\alpha\beta\omega + 2n\pi,$$ $$(1-i)\alpha\beta\omega = \bigl(2n-\tfrac12\bigr)\pi.$$ But $\omega = \dfrac{1+i}{\sqrt2}$. So $(1-i)\omega = \dfrac{(1-i)(1+i)}{\sqrt2} = \sqrt2$, and the condition becomes $$\alpha\beta\sqrt2 = \frac{(4n-1)\pi}2,$$ which is equivalent to the given condition for the result to fail.