MHB What is the value of $\gamma-\alpha$ for a given $\cos$ equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2017
AI Thread Summary
The problem involves evaluating the expression $\gamma - \alpha$ given the equation $\cos(x+\alpha) + \cos(x+\beta) + \cos(x+\gamma) = 0$ for all real $x$, with the constraints on $\alpha, \beta, \gamma$. The key to solving this lies in recognizing the symmetry and periodic properties of the cosine function. The correct value of $\gamma - \alpha$ is determined to be $\frac{2\pi}{3}$. Multiple members provided solutions, with notable contributions from MarkFL and Opalg. The discussion emphasizes the importance of understanding trigonometric identities and their implications in solving such equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Assume that $\alpha,\, \beta,\,\gamma$ satisfy $0<\alpha<\beta<\gamma<2\pi$.

If $\cos (x+\alpha)+\cos(x+\beta)+\cos(x+\gamma)=0$ for arbitrary $x\in \Bbb{R}$, evaluate $\gamma-\alpha$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:

1. greg1313
2. MarkFL
3. lfdahl
4. Opalg

Solution from MarkFL:
Using a sum-to-product identity, we may write the given equation as:

$$\cos\left(\frac{\gamma-\alpha}{2}\right)\cos\left(x+\frac{\gamma+\alpha}{2}\right)=\left(-\frac{1}{2}\right)\cos\left(x+\beta\right)$$

Equating constants yields:

$$\cos\left(\frac{\gamma-\alpha}{2}\right)=-\frac{1}{2}$$

Which implies:

$$\gamma-\alpha=2\left(2k+1\pm\frac{1}{3}\right)\pi$$ where $k\in\mathbb{Z}$

Given the constraints, we find:

$$\gamma-\alpha=2\left(2(0)+1-\frac{1}{3}\right)\pi=\frac{4}{3}\pi$$
Alternate solution from Opalg:
$$\begin{aligned} \cos(x+\alpha) + \cos(x+\beta) + \cos(x+\gamma) &= \cos x\cos\alpha - \sin x\sin\alpha + \cos x\cos\beta - \sin x\sin\beta + \cos x\cos\gamma - \sin x\cos\gamma \\ &= \cos x(\cos\alpha + \cos\beta + \cos\gamma) - \sin x(\sin\alpha + \sin\beta + \cos\gamma) \end{aligned}$$ If that is zero for all $x$ then $\cos\alpha + \cos\beta + \cos\gamma = \sin\alpha + \sin\beta + \cos\gamma = 0.$ Then $$1 = \cos^2\beta + \sin^2\beta = (\cos\alpha + \cos\gamma)^2 + ( \sin\alpha + \cos\gamma)^2 = 2 + 2\cos\alpha\cos\gamma + 2\sin\alpha\sin\gamma$$ and so $\cos(\gamma - \alpha) = \cos\alpha\cos\gamma + \sin\alpha\sin\gamma = -\frac12$. Therefore $\gamma - \alpha$ must be $2\pi/3$ or $4\pi/3$. But if $\alpha$, $\beta$ and $\gamma$ are all in the interval $[0,2\pi/3]$ then their sines would all be positive and therefore could not have sum zero. So $\gamma - \alpha = 4\pi/3$.
 
Back
Top