ok i have actually read more of archimedes and think i know how he found the volume of a sphere, or at least how he proved it. (he discovered it by setting up a lever and balancing the weights of different solids, knowing the centers of gravity of some of them, and deducing that of others.)
basic principles:
1) principle of parallel slices: two solids with equal areas for all plane slices parallel to a given plane, have equal volumes.
2) magnification principle: two pyramids with bases of equal area, have volumes in the same ratio as their heights.
these principles are proved by the method of approximation by blocks or cylinders, since solids with equal plane slices have equal approximating cylinders, and scaling the height merely scales the height of the approximating cylinders. then one proceeds as follows, first for pyramids and cones, then spheres.
step 1) right pyramids of height equal to base edge:
choose 2 opposite vertices on a cube, call them 1 and 2, and join them by a diagonal. choose a face having vertex 2 as a corner, and join every point of this face to vertex 1. this forms a right pyramid. the other two choices of faces having vertex 2 as corner, yield congruent pyramids, by rotation, and all three together make up the cube. thus the given right pyramid has volume 1/3 that of the cube, or 1/3 Bh, where B = area of base, and h = height.
step 2) using magnification principle, one extends the same formula to the case of arbitrary height in comparison to base edge, and using parallel slices one extends the same formula to pyramids which are not "right", but for which the angle to the vertex is arbitrary, since sliding a pyramid over at a new angle does not change the area of parallel slices.
step 3) approximating the base circle by polygons, hence approximating the cone by pyramids, gives the same formula for a cone, V = 1/3 Bh.
step 4) now circumscribe a cylinder about a sphere, and inscribe a double cone (vertex at center, bases at both top and bottom) in the same cylinder. then pythagoras shows that the area of a parallel slice of the cylinder has area equal to the sum of the parallel slices of the sphere and the cone.
Thus the volume of the cylinder equals the sum of the volumes of the cone and the sphere. in particular since the cone has 1/3 the volume of the cylinder, the sphere has 2/3 the volume of the circumscribing cylinder.
And that is how archimedes proved the volume of a sphere.
the by the argument above, viewing the sphere as a limit of pyramids with vertices at the center, he showed the surface area of the sphere, defined as the limit of the areas of the bases of the inscribed pyramids, was 3/R times the volume of the sphere, since tht is the formula for the base area of a pyramid in terms of the volume.
I.e. the volume of a sphere is 1/3 SR where S is the surface area and R is the radius.
and that's that! hooray for archimedes, who was obviously in almost complete command of the methods of purely integral calculus.
the only thing needing to be added, was the algebraic technique of antidifferentiating the algebraic formula for the area of the parallel slices and getting an algebraic formula for the moving volumes below each slice.
so as far as i know now it had nothing to do with ding up squares of integers at all, quite opposite to my original impression.