jbriggs444 said:
I am not getting it. If you are considering the left hand portion of the pipe then the right hand side and, in particular, ##H##, is irrelevant.
@haruspex has provided a big hint. You know the pressure at the apex.
haruspex said:
Much better.
Yes, v1=0.
But on the left you have both ρgh and ρg(H-h), which makes no sense because that would reduce to ρgH, canceling the term on the right.
Next, you need an equation relating h to v2.
Let me try again
##P_1+\frac{1}{2} \rho {v_1}^2 + \rho gh_1 = P_2 + \frac{1}{2} \rho {v_2}^2 + \rho gh_2##
Taking the bottom of the pool as reference, ##h_1=0## and ##h_2=h##
##P_{\text{atm}} + \rho gh'= \frac{1}{2} \rho {v_2}^2 + \rho gh##, where ##h'## is the depth of water in the pool
---------------------------------------------------------------------------------------------------------------------------------------------------
For equation relating ##h'## to ##v_2##:
##\frac{d \text{(volume)}}{dt}=-a.v_2## where ##a## is area of pipe and the negative sign because the volume is decreasing
##A.\frac{dh'}{dt}=-a.v_2## , where ##A## is area of poolI need to use integration?
##\int dh'=-\frac{a}{A} .v_2 \int dt##
##h'=-k.v_2.t+c## , where ##k=\frac{a}{A}##
Taking ##h'=h## when ##t=0##, I get:
##h'=-k.v_2.t+h##
-------------------------------------------------------------------------------------------------------------------------------------------------------
So:
##P_{\text{atm}} + \rho gh'= \frac{1}{2} \rho {v_2}^2 + \rho gh##
##P_{\text{atm}} + \rho g(-k.v_2.t+h)=\frac{1}{2} \rho {v_2}^2 + \rho gh##The term ##\rho gh## will cancel out?
##P_{\text{atm}} - \rho gk.v_2.t=\frac{1}{2} \rho {v_2}^2##To move all the water to the apex of the tube ##\rightarrow h'=0##
##h'=-k.v_2.t+h##
##t=\frac{h}{k.v_2}##Then:
##P_{\text{atm}} - \rho gk.v_2.t=\frac{1}{2} \rho {v_2}^2##
##P_{\text{atm}} - \rho gk.v_2 \frac{h}{k.v_2}=\frac{1}{2} \rho {v_2}^2##
##P_{\text{atm}} - \rho gh=\frac{1}{2} \rho {v_2}^2##Is this even correct? Thanks