haruspex said:
Yes, but v2 is a variable, so it is not as simple as you have treated it.
Go back to your differential equation:
Substitute for v2 what you get from Bernoulli.
##P_{\text{atm}}+\rho gh'=\frac{1}{2} \rho{v_2}^2 + \rho gh##
##v_2=\sqrt{\frac{2}{\rho} (P_{\text{atm}}+\rho gh' - \rho gh)}##
----------------------------------------------------------------------------------------------
##A.\frac{dh'}{dt}=-a.v_2##
##A.\frac{dh'}{dt}=-a.\sqrt{\frac{2}{\rho} (P_{\text{atm}}+\rho gh' - \rho gh)}##
##\int \frac{1}{\sqrt{(P_{\text{atm}}+\rho gh' - \rho gh)}}dh'=\int -\frac{a}{A} \sqrt{\frac{2}{\rho}}dt##
##\frac{2\sqrt{P_{\text{atm}}+\rho gh' - \rho gh}}{\rho g}=-\frac{a}{A} \sqrt{\frac{2}{\rho}} t+c##
Taking ##h'=h## when ##t=0##, I get:
##\frac{2\sqrt{P_{\text{atm}}+\rho gh' - \rho gh}}{\rho g}=-\frac{a}{A} \sqrt{\frac{2}{\rho}} ~t+\frac{2 \sqrt{P_{\text{atm}}}}{\rho g}##
Is this correct? If yes, the next step I have in my mind is:
1. Put ##h'=0## to find the time taken for the water to reach the apex of the pipe
2. Find ##v_2## using bernoulli equation by setting ##h'=0##
3. Using the formula ##\Delta y=u.t+\frac{1}{2} gt^2## to find the time taken by the water to fall from apex to container, where ##\Delta y=-20~\text{m}## and ##u=-v_2##
Is my idea correct? Thanks