Pyter said:
You mean that in the "general" (neutron stars) scenario, the physical observations (radial and angular positions, estimated (?) masses) are useless in setting up the EFE, let alone solve it?
Yes. More precisely, they don't help in either reducing the number of equations you have to solve or the number of unknown functions you have to solve for. All those physical observations do is give you particular parameters to plug into the solution after you've obtained it. (For example, knowing the mass of some spherically symmetric body does not help you obtain the Schwarzschild solution for the spacetime geometry outside the body; all it does is give you the number ##M## to plug into the solution once you've got it.)
Pyter said:
Does it mean that in that case the EFE is not even solvable in theory?
Of course not. See above.
Pyter said:
if you don't have enough constraints to reduce the degrees of freedom, the solution will be far from unique.
You are misstating this. See below.
Pyter said:
In the Schwa. case you use the symmetry of coordinates and the continuity equation to reduce the DOFs
None of those are physical observations. See my comment above about the Schwarzschild solution for the vacuum region outside a spherically symmetric massive body. You use spherical symmetry plus vacuum to obtain a mathematical expression for the metric. But this expression does not describe just
one metric; it describes a family of them, all having the same form, but with different numbers for the constant ##M## that appears in the solution. Your knowledge of the actual mass of the particular body you are interested in tells you what number to plug in for ##M## in the metric.
In other words: even
after you have used symmetries, etc., to reduce the number of degrees of freedom, you
still don't have a "unique" solution; you will have an expression for the metric that will have some undetermined parameters in it (like ##M## in the Schwarzschild case). If you want a unique solution, you need to fill in values for those parameters. Physical observations of the particular system you are interested in can help you to do that; but they can't help you to get to that point, where you have an expression for the metric that only needs some parameters filled into be unique.
Pyter said:
in the "general" case you can't rely on the symmetry: you have more degrees of freedom and the same constraints as in the Schwa. case.
I have no idea what you are talking about here. Perhaps rethinking your understanding in the light of the above will help.