MHB When there is a double root for the eigenvalue, how many eigenvectors?

Petrus
Messages
702
Reaction score
0
Hello MHB,
I got one question. If I want to find basis ker and it got double root in eigenvalue but in that eigenvalue i find one eigenvector(/basis) what kind of decission can I make? Is it that if a eigenvalue got double root Then it Will ALWAYS have Two eigenvector(/basis)?

Regards,
$$|\pi\rangle$$
 
Physics news on Phys.org
Re: 1 basis or Two basis for double root to ker?

Petrus said:
If I want to find basis ker and it got double root in eigenvalue but in that eigenvalue i find one eigenvector(/basis) what kind of decission can I make? Is it that if a eigenvalue got double root Then it Will ALWAYS have Two eigenvector(/basis)?
Not necessarily. When there is a double root for the eigenvalue there will always be at least one eigenvector. There may or may not be a second, linearly independent, eigenvector. For example, the matrices $\begin{bmatrix}1&0\\ 0&1 \end{bmatrix}$ and $\begin{bmatrix}1&1\\ 0&1 \end{bmatrix}$ both have a repeated eigenvalue $1$, but the first one has two linearly independent eigenvectors and the second one only has one.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top