Where Do I Go From Here in Evaluating This Integral?

  • Context: MHB 
  • Thread starter Thread starter Pull and Twist
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary

Discussion Overview

The discussion revolves around evaluating the integral $$\int_{0}^{\infty} \frac{x\arctan\left({x}\right)}{(x^2+1)^2}\,dx$$. Participants explore various methods for solving this integral, including integration by parts and trigonometric substitution, while addressing potential issues with limits and upper bounds.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes a trigonometric substitution $$x=\tan\left({\theta}\right)$$ and outlines a series of transformations leading to a limit involving $$\theta$$.
  • Another participant suggests using integration by parts with $$u=\arctan(x)$$ and $$dv=\frac{x}{\left(x^2+1\right)^2}\,dx$$, leading to a different expression for the integral.
  • A hint is provided that $$\int^{\frac{\pi}{2}}_0\frac{\theta\tan\theta\sec^2\theta}{\sec^4\theta}\,\text{d}\theta=\frac{\pi}{8}$$, which may relate to the integral being evaluated.
  • One participant questions the limits of integration after the trigonometric substitution, suggesting that the upper limit should be $$\tan^{-1}(t)$$ instead of $$t$$, and that the limit should approach $$\pi/2^{-}$$ rather than infinity.

Areas of Agreement / Disagreement

Participants express differing views on the correct limits of integration and the approach to take for evaluating the integral. There is no consensus on the best method or the correctness of the limits suggested.

Contextual Notes

Some participants note potential issues with the limits of integration after performing the trigonometric substitution, indicating that the upper limits may need to be reconsidered. There is also a lack of resolution regarding the implications of the hint provided.

Pull and Twist
Messages
48
Reaction score
0
I'm trying to evaluate the following problem...
$$\int_{0}^{\infty} \frac{x\arctan\left({x}\right)}{(x^2+1)^2}\,dx$$

$$x=\tan\left({\theta}\right)$$
$$\theta=\arctan\left({x}\right)$$
$$dx=\sec^2\left({\theta}\right)d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)\sec^2\left({\theta}\right)}{\sec^4\left({\theta}\right)}\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)}{\sec^2\left({\theta}\right)}\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\frac{\tan\left({\theta}\right)}{\sec\left({\theta}\right)}\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\sin\left({\theta}\right)\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \theta\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta2\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta}{2}$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\sin\left({2\theta}\right)\,d\theta}{2}$$

$$\lim_{{t}\to{\infty}}\frac{1}{2}\int_{0}^{t} \theta\sin\left({2\theta}\right)\,d\theta$$

Integration by Parts
$$u=\theta$$
$$du=d\theta$$
$$dv=\sin\left({2\theta}\right)d\theta$$
$$v=-\frac{\cos\left({2\theta}\right)}{2}$$$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\int_{0}^{t}\cos\left({2\theta}\right)\,d\theta\right\}$$

$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\frac{\sin\left({2\theta}\right)}{4}\right\}$$

Where do I go from here??
 
Physics news on Phys.org
Hint:

$$\int^{\frac{\pi}{2}}_0\frac{\theta\tan\theta\sec^2\theta}{\sec^4\theta}\,\text{d}\theta=\frac{\pi}{8}$$
 
I would begin by using IBP straightaway:

$$u=\arctan(x)\,\therefore\,du=\frac{1}{x^2+1}\,dx$$

$$dv=\frac{x}{\left(x^2+1\right)^2}\,\therefore\,v=-\frac{1}{2\left(x^2+1\right)}$$

And so we have:

$$\int_0^{\infty}\frac{x\arctan(x)}{\left(x^2+1\right)^2}\,dx=-\frac{1}{2}\left[\frac{\arctan(x)}{x^2+1}\right]_0^{\infty}+\frac{1}{2}\int_0^{\infty}\frac{1}{\left(x^2+1\right)^2}\,dx$$

Now since:

$$\lim_{x\to\infty}\frac{\arctan(x)}{x^2+1}=\lim_{x\to0}\frac{\arctan(x)}{x^2+1}=0$$, we have:

$$\int_0^{\infty}\frac{x\arctan(x)}{\left(x^2+1\right)^2}\,dx=\frac{1}{2}\int_0^{\infty}\frac{1}{\left(x^2+1\right)^2}\,dx$$

Rewriting the integrand on the right, we have:

$$\int_0^{\infty}\frac{x\arctan(x)}{\left(x^2+1\right)^2}\,dx=\frac{1}{4}\int_0^{\infty}\frac{\left(x^2+1\right)-2x^2+\left(x^2+1\right)}{\left(x^2+1\right)^2}\,dx$$

Making the observation that:

$$\frac{d}{dx}\left(\frac{x}{x^2+1}\right)=\frac{\left(x^2+1\right)-2x^2}{\left(x^2+1\right)^2}$$

$$\frac{d}{dx}\left(\arctan(x)\right)=\frac{1}{x^2+1}=\frac{x^2+1}{\left(x^2+1\right)^2}$$

Can you proceed?
 
PullandTwist said:
I'm trying to evaluate the following problem...
$$\int_{0}^{\infty} \frac{x\arctan\left({x}\right)}{(x^2+1)^2}\,dx$$

$$x=\tan\left({\theta}\right)$$
$$\theta=\arctan\left({x}\right)$$
$$dx=\sec^2\left({\theta}\right)d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)\sec^2\left({\theta}\right)}{\sec^4\left({\theta}\right)}\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)}{\sec^2\left({\theta}\right)}\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\frac{\tan\left({\theta}\right)}{\sec\left({\theta}\right)}\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\sin\left({\theta}\right)\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \theta\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta2\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta}{2}$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\sin\left({2\theta}\right)\,d\theta}{2}$$

$$\lim_{{t}\to{\infty}}\frac{1}{2}\int_{0}^{t} \theta\sin\left({2\theta}\right)\,d\theta$$

Integration by Parts
$$u=\theta$$
$$du=d\theta$$
$$dv=\sin\left({2\theta}\right)d\theta$$
$$v=-\frac{\cos\left({2\theta}\right)}{2}$$$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\int_{0}^{t}\cos\left({2\theta}\right)\,d\theta\right\}$$

$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\frac{\sin\left({2\theta}\right)}{4}\right\}$$

Where do I go from here??

Hi PullandTwist,

I think you're having trouble because either your upper limits of integration are off or your're taking the wrong limit. After performing the trig substitution $x = \tan(\theta)$, the upper limits of your integrals should be $\tan^{-1}(t)$ instead of $t$; otherwise, your limit should be as $t\to \pi/2^{-}$, not $t\to \infty$.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K