Pull and Twist
- 48
- 0
I'm trying to evaluate the following problem...
$$\int_{0}^{\infty} \frac{x\arctan\left({x}\right)}{(x^2+1)^2}\,dx$$
$$x=\tan\left({\theta}\right)$$
$$\theta=\arctan\left({x}\right)$$
$$dx=\sec^2\left({\theta}\right)d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)\sec^2\left({\theta}\right)}{\sec^4\left({\theta}\right)}\,d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)}{\sec^2\left({\theta}\right)}\,d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\frac{\tan\left({\theta}\right)}{\sec\left({\theta}\right)}\right)\,d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\sin\left({\theta}\right)\right)\,d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \theta\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta2\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta}{2}$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\sin\left({2\theta}\right)\,d\theta}{2}$$
$$\lim_{{t}\to{\infty}}\frac{1}{2}\int_{0}^{t} \theta\sin\left({2\theta}\right)\,d\theta$$
Integration by Parts
$$u=\theta$$
$$du=d\theta$$
$$dv=\sin\left({2\theta}\right)d\theta$$
$$v=-\frac{\cos\left({2\theta}\right)}{2}$$$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\int_{0}^{t}\cos\left({2\theta}\right)\,d\theta\right\}$$
$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\frac{\sin\left({2\theta}\right)}{4}\right\}$$
Where do I go from here??
$$\int_{0}^{\infty} \frac{x\arctan\left({x}\right)}{(x^2+1)^2}\,dx$$
$$x=\tan\left({\theta}\right)$$
$$\theta=\arctan\left({x}\right)$$
$$dx=\sec^2\left({\theta}\right)d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)\sec^2\left({\theta}\right)}{\sec^4\left({\theta}\right)}\,d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)}{\sec^2\left({\theta}\right)}\,d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\frac{\tan\left({\theta}\right)}{\sec\left({\theta}\right)}\right)\,d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\sin\left({\theta}\right)\right)\,d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \theta\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta2\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta}{2}$$
$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\sin\left({2\theta}\right)\,d\theta}{2}$$
$$\lim_{{t}\to{\infty}}\frac{1}{2}\int_{0}^{t} \theta\sin\left({2\theta}\right)\,d\theta$$
Integration by Parts
$$u=\theta$$
$$du=d\theta$$
$$dv=\sin\left({2\theta}\right)d\theta$$
$$v=-\frac{\cos\left({2\theta}\right)}{2}$$$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\int_{0}^{t}\cos\left({2\theta}\right)\,d\theta\right\}$$
$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\frac{\sin\left({2\theta}\right)}{4}\right\}$$
Where do I go from here??