Where Do I Go From Here in Evaluating This Integral?

  • Context: MHB 
  • Thread starter Thread starter Pull and Twist
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The forum discussion focuses on evaluating the integral $$\int_{0}^{\infty} \frac{x\arctan\left({x}\right)}{(x^2+1)^2}\,dx$$ using trigonometric substitution and integration by parts. The substitution $$x=\tan\left({\theta}\right)$$ leads to a series of transformations and limits that require careful handling of the upper limits of integration. A key insight provided is that the upper limit should be $$\tan^{-1}(t)$$ approaching $$\frac{\pi}{2}$$, rather than infinity, to ensure proper evaluation of the integral.

PREREQUISITES
  • Understanding of trigonometric substitutions in integrals
  • Familiarity with integration by parts (IBP)
  • Knowledge of limits and improper integrals
  • Basic concepts of arctangent and secant functions
NEXT STEPS
  • Study the process of trigonometric substitution in integrals, specifically $$x = \tan(\theta)$$
  • Review the method of integration by parts, focusing on its application in evaluating definite integrals
  • Learn about the properties of limits, particularly in the context of improper integrals
  • Explore the relationship between arctangent and its derivatives, especially in integral contexts
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques, particularly those involving trigonometric functions and limits.

Pull and Twist
Messages
48
Reaction score
0
I'm trying to evaluate the following problem...
$$\int_{0}^{\infty} \frac{x\arctan\left({x}\right)}{(x^2+1)^2}\,dx$$

$$x=\tan\left({\theta}\right)$$
$$\theta=\arctan\left({x}\right)$$
$$dx=\sec^2\left({\theta}\right)d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)\sec^2\left({\theta}\right)}{\sec^4\left({\theta}\right)}\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)}{\sec^2\left({\theta}\right)}\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\frac{\tan\left({\theta}\right)}{\sec\left({\theta}\right)}\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\sin\left({\theta}\right)\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \theta\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta2\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta}{2}$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\sin\left({2\theta}\right)\,d\theta}{2}$$

$$\lim_{{t}\to{\infty}}\frac{1}{2}\int_{0}^{t} \theta\sin\left({2\theta}\right)\,d\theta$$

Integration by Parts
$$u=\theta$$
$$du=d\theta$$
$$dv=\sin\left({2\theta}\right)d\theta$$
$$v=-\frac{\cos\left({2\theta}\right)}{2}$$$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\int_{0}^{t}\cos\left({2\theta}\right)\,d\theta\right\}$$

$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\frac{\sin\left({2\theta}\right)}{4}\right\}$$

Where do I go from here??
 
Physics news on Phys.org
Hint:

$$\int^{\frac{\pi}{2}}_0\frac{\theta\tan\theta\sec^2\theta}{\sec^4\theta}\,\text{d}\theta=\frac{\pi}{8}$$
 
I would begin by using IBP straightaway:

$$u=\arctan(x)\,\therefore\,du=\frac{1}{x^2+1}\,dx$$

$$dv=\frac{x}{\left(x^2+1\right)^2}\,\therefore\,v=-\frac{1}{2\left(x^2+1\right)}$$

And so we have:

$$\int_0^{\infty}\frac{x\arctan(x)}{\left(x^2+1\right)^2}\,dx=-\frac{1}{2}\left[\frac{\arctan(x)}{x^2+1}\right]_0^{\infty}+\frac{1}{2}\int_0^{\infty}\frac{1}{\left(x^2+1\right)^2}\,dx$$

Now since:

$$\lim_{x\to\infty}\frac{\arctan(x)}{x^2+1}=\lim_{x\to0}\frac{\arctan(x)}{x^2+1}=0$$, we have:

$$\int_0^{\infty}\frac{x\arctan(x)}{\left(x^2+1\right)^2}\,dx=\frac{1}{2}\int_0^{\infty}\frac{1}{\left(x^2+1\right)^2}\,dx$$

Rewriting the integrand on the right, we have:

$$\int_0^{\infty}\frac{x\arctan(x)}{\left(x^2+1\right)^2}\,dx=\frac{1}{4}\int_0^{\infty}\frac{\left(x^2+1\right)-2x^2+\left(x^2+1\right)}{\left(x^2+1\right)^2}\,dx$$

Making the observation that:

$$\frac{d}{dx}\left(\frac{x}{x^2+1}\right)=\frac{\left(x^2+1\right)-2x^2}{\left(x^2+1\right)^2}$$

$$\frac{d}{dx}\left(\arctan(x)\right)=\frac{1}{x^2+1}=\frac{x^2+1}{\left(x^2+1\right)^2}$$

Can you proceed?
 
PullandTwist said:
I'm trying to evaluate the following problem...
$$\int_{0}^{\infty} \frac{x\arctan\left({x}\right)}{(x^2+1)^2}\,dx$$

$$x=\tan\left({\theta}\right)$$
$$\theta=\arctan\left({x}\right)$$
$$dx=\sec^2\left({\theta}\right)d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)\sec^2\left({\theta}\right)}{\sec^4\left({\theta}\right)}\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\tan\left({\theta}\right)}{\sec^2\left({\theta}\right)}\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\frac{\tan\left({\theta}\right)}{\sec\left({\theta}\right)}\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \left(\frac{\theta}{\sec\left({\theta}\right)}\right)\left(\sin\left({\theta}\right)\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \theta\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta2\cos\left({\theta}\right)\sin\left({\theta}\right)\,d\theta}{2}$$

$$\lim_{{t}\to{\infty}}\int_{0}^{t} \frac{\theta\sin\left({2\theta}\right)\,d\theta}{2}$$

$$\lim_{{t}\to{\infty}}\frac{1}{2}\int_{0}^{t} \theta\sin\left({2\theta}\right)\,d\theta$$

Integration by Parts
$$u=\theta$$
$$du=d\theta$$
$$dv=\sin\left({2\theta}\right)d\theta$$
$$v=-\frac{\cos\left({2\theta}\right)}{2}$$$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\int_{0}^{t}\cos\left({2\theta}\right)\,d\theta\right\}$$

$$\lim_{{t}\to{\infty}}\frac{1}{2}\left\{\left[-\frac{\theta\cos\left({2\theta}\right)}{2}\right]+\frac{\sin\left({2\theta}\right)}{4}\right\}$$

Where do I go from here??

Hi PullandTwist,

I think you're having trouble because either your upper limits of integration are off or your're taking the wrong limit. After performing the trig substitution $x = \tan(\theta)$, the upper limits of your integrals should be $\tan^{-1}(t)$ instead of $t$; otherwise, your limit should be as $t\to \pi/2^{-}$, not $t\to \infty$.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K