MHB Which Equation Represents a Line Parallel to 3y-1=2x?

AI Thread Summary
The discussion centers on identifying an equation that represents a line parallel to the line given by 3y-1=2x. The slope of the original line is calculated to be 2/3. Participants analyze the slopes of the provided options, concluding that none of them match the required slope for parallelism. There is a suggestion that a typo may exist in the original problem. Ultimately, the consensus is that none of the answer choices are correct.
flnursegirl
Messages
8
Reaction score
0
The graph of which of the following equations is a straight line parallel to the graph of 3y-1=2x?
A: -3x + 2y = -2
B: -2x + y = 6
C: -2x + 2y = 3
D: -x + 3y = -2

Can you show the work when you answer please? Thanks
 
Mathematics news on Phys.org
flnursegirl said:
The graph of which of the following equations is a straight line parallel to the graph of 3y-1=2x?
A: -3x + 2y = -2
B: -2x + y = 6
C: -2x + 2y = 3
D: -x + 3y = -2

Can you show the work when you answer please? Thanks
Usually we ask you to show your work, so we can see where you got stuck.

There are a number of ways to find the slope of a line in the plane-which ones do you know?
 
Using y=mx+b I got y=2/3x+1 for the first line.

For choice A I got y=3/2x-2
For choice B I got y=2x+6 (the key says this is the answer)
For choice C I got y=1x=3
For choice D I got y=1/3x-2

None of these look correct to me using this method.
 
flnursegirl said:
Using y=mx+b I got y=2/3x+1 for the first line.

For choice A I got y=3/2x-2
For choice B I got y=2x+6 (the key says this is the answer)
For choice C I got y=1x+3
For choice D I got y=1/3x-2

None of these look correct to me using this method.
That's a good method, and none of the answers give the same "$m$" value, so it appears your text has a typo. You should use parentheses when you use the "/" symbol, so no one confuses

y = 3/2x - 2, whereby you mean: y = (3/2)x - 2 with:

y = 3/(2x - 2).
 

Attachments

  • IMAG00228.jpg
    IMAG00228.jpg
    67.1 KB · Views: 105
Hey flnursegirl! ;)

I agree with your method and with Deveno - none of the given answers is correct.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top