MHB Which Equation Represents a Line Parallel to 3y-1=2x?

AI Thread Summary
The discussion centers on identifying an equation that represents a line parallel to the line given by 3y-1=2x. The slope of the original line is calculated to be 2/3. Participants analyze the slopes of the provided options, concluding that none of them match the required slope for parallelism. There is a suggestion that a typo may exist in the original problem. Ultimately, the consensus is that none of the answer choices are correct.
flnursegirl
Messages
8
Reaction score
0
The graph of which of the following equations is a straight line parallel to the graph of 3y-1=2x?
A: -3x + 2y = -2
B: -2x + y = 6
C: -2x + 2y = 3
D: -x + 3y = -2

Can you show the work when you answer please? Thanks
 
Mathematics news on Phys.org
flnursegirl said:
The graph of which of the following equations is a straight line parallel to the graph of 3y-1=2x?
A: -3x + 2y = -2
B: -2x + y = 6
C: -2x + 2y = 3
D: -x + 3y = -2

Can you show the work when you answer please? Thanks
Usually we ask you to show your work, so we can see where you got stuck.

There are a number of ways to find the slope of a line in the plane-which ones do you know?
 
Using y=mx+b I got y=2/3x+1 for the first line.

For choice A I got y=3/2x-2
For choice B I got y=2x+6 (the key says this is the answer)
For choice C I got y=1x=3
For choice D I got y=1/3x-2

None of these look correct to me using this method.
 
flnursegirl said:
Using y=mx+b I got y=2/3x+1 for the first line.

For choice A I got y=3/2x-2
For choice B I got y=2x+6 (the key says this is the answer)
For choice C I got y=1x+3
For choice D I got y=1/3x-2

None of these look correct to me using this method.
That's a good method, and none of the answers give the same "$m$" value, so it appears your text has a typo. You should use parentheses when you use the "/" symbol, so no one confuses

y = 3/2x - 2, whereby you mean: y = (3/2)x - 2 with:

y = 3/(2x - 2).
 

Attachments

  • IMAG00228.jpg
    IMAG00228.jpg
    67.1 KB · Views: 103
Hey flnursegirl! ;)

I agree with your method and with Deveno - none of the given answers is correct.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top