Which Little "o" to use for Maclaurin expansion?

Click For Summary
The discussion centers on determining the appropriate little "o" notation for the Maclaurin expansion of a given expression. The first term, derived from the division, is identified as little o(x^3), while the second term, involving multiplication by sin, is noted as little o(x^4). It is emphasized that when summing terms, the overall order is dictated by the term with the lowest order, which in this case is third order due to the first term. Additionally, participants clarify the correct spelling of "Maclaurin" and provide tips on using geometric series for simplification. The consensus is to ensure all expansions are sufficiently high to accurately capture the desired terms.
Anne5632
Messages
23
Reaction score
2
Homework Statement
Find McLaren expansion to order 3
Relevant Equations
((2+3x)/(2-x))+(2-3x)sin2x
I have calculated it and got the answer but for the first equation with the division the little o is (x^3), I believe and for the equation being multiplied by sin, little o is (x^4)
For my answer do I add little o(x^4)?
 
Last edited:
Physics news on Phys.org
I would say to order 3 means up to and including terms in ##x^3##. I.e. neglecting terms of order ##x^4## and above.
 
  • Like
Likes Charles Link and Anne5632
Anne5632 said:
Homework Statement:: Find McLaren expansion to order 3
Relevant Equations:: ((2+3x)/(2-x))+(2-3x)sin2x

I have calculated it and got the answer but for the first equation with the division the little o is (x^3), I believe and for the equation being multiploed by sin, little o is (x^4)
For my answer do I add little o(x^4)?
Generally, you have to play it safe an expand everything to high enough order so that the terms you want in the end are correct and then you toss the rest.

When you have a sum or difference, the order is limited by the term with the lowest order. So in your case, because you expanded the first term to third order, the overall expression you ended up with is only good to third-order. It doesn't matter if you expand the second term to fourth or higher order.

A couple of nitpicks.
  • It's spelled Maclaurin. You have two different spellings, neither correct.
  • ##(2+3x)/(2-x)## is the first term or an expression. It's not an equation as there's no equal sign. Similarly, ##(2-3x)\sin 2x## is not an equation.
 
To address the thread title, keep in mind that
  • ##f(x) = O(g(x))## if ##f/g## is bounded as ##x \rightarrow x_0##
  • ##f(x) = o(g(x))## if ##f/g \rightarrow 0## as ##x \rightarrow x_0##
(whoever invented this notation was clearly taking the proverbial)
 
Last edited:
Just a couple tips: With ## \frac{1}{2-x} =(1/2)(\frac{1}{1-\frac{x}{2}}) ##, the geometric series approach is the simplest, and you can avoid taking derivatives. Meanwhile the series for the sine function is well known, and the problem is thereby a simple one. I agree with post 2 for what terms to keep.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K