Which quantum mechanics textbooks?

AI Thread Summary
For self-studying quantum mechanics, Griffiths is recommended as the starting point due to its introductory nature, while Shankar is viewed as less suitable for beginners despite its depth. Some participants suggest that Griffiths provides insufficient motivation for key concepts, particularly the Schrödinger equation, and recommend supplementary texts like Eisberg & Resnick or Messiah for historical context and foundational understanding. After Griffiths, Shankar can be explored for its in-depth treatment of mathematical concepts, although its style may not appeal to everyone. Sakurai is considered a valuable follow-up, filling gaps left by the other texts and offering a streamlined perspective on quantum mechanics. Overall, a suggested sequence is to start with Griffiths, then consider Shankar or directly move to Sakurai based on personal preference and comfort with the material.
bahal2
Messages
5
Reaction score
0
I want to begin self-studying some quantum mechanics, and was wondering whether Griffiths or Shankar would be more suitable. I know Griffiths is an introductory book, but I'm not sure where Shankar fits--some say it's a good place to learn QM for the first time, others say it's suitable for graduate students.

On a related note, is Griffiths sufficient preparation for Sakurai? Is reading both Shankar and Sakurai overkill?

To summarize: Which of these sequences should I take?
1) Griffiths, Sakurai
2) Shankar, Sakurai
3) Griffiths, Shankar
4) Griffiths, Shankar, Sakurai

Thanks,
Aleksandar
 
Physics news on Phys.org
I've used Shankar at some point in time, his style is nice, but frankly, I don't like it.
I would not advise using it as a first book on QM.

So if you're asking whether to use Shankar or Griffiths, I would suggest going for Griffiths, then move on to whatever other book you like.

One of my favorite books (covers a wide range of topics, more like beginner/intermediate level):
https://www.amazon.com/dp/0199560277/?tag=pfamazon01-20

Konishi & Paffuti book should provide sufficient background material for Sakurai's modern QM.
 
Last edited by a moderator:
My main complaint with Shankar is that he is prolix. (You know I've just been waiting to use that word.)
 
To me, the place to start would be the first four chapters of Eisberg and Resnick. I don't think Griffiths, Shankar, and Sakurai really motivate QM properly. E&R give a lot of historical background, experiments that contradicted classical models, etc. I feel that one needs to convince oneself that classical physics had to be modified, to reconcile the theory with these experiments.
If you don't like E&R, Ch. 1-2 of Messiah work well for the same purpose.

Griffiths has no motivation at all, just drops the Schrodinger equation on page 1. This is incredibly unsatisfying, and honestly, readers should feel insulted. Even though the SE can't be "derived," there are arguments by analogy, physical reasons that it is what it is. (For an extreme example, the most convincing argument to me is by analogy to the wave optics -> geometric optics limit, using the Hamilton-Jacobi equation.) Nevertheless, once a reader is convinced about the Schrodinger equation, the rest of the book reads nicely, although it feels like "quantum lite" most of the time.

After Griffiths (or concurrently), go with Shankar. It really goes in depth, and develops your mathematical skills. Chapter 1 is the best treatment of linear algebra for QM that I've seen. I'm not a fan of how the path integral, berry phase, landau levels, etc. are thrown in as an afterthought in chapter 21, but the rest of the book was fun.

Finally, read Sakurai. It fills in a lot of holes that the other books leave, and approaches the rest from an alternative, more streamlined point of view. I particularly like how Schrodinger's equation is arrived at from the postulate of unitary time evolution. (Bonus: there's a new edition with an extra chapter on relativistic QM. The new edition leaves out Young tableaux, so make sure to learn that from an alternative source. The previous (red) edition of Sakurai has a treatment, but I really like Greiner QM: Symmetries.)
 
Thanks for the advice everyone!
I'm already familiar with the motivation for QM, so it seems Griffiths is the right place to start. I'll take a look at Shankar later and see if like it; if not, I'll just go straight to Sakurai.
 
By looking around, it seems like Dr. Hassani's books are great for studying "mathematical methods for the physicist/engineer." One is for the beginner physicist [Mathematical Methods: For Students of Physics and Related Fields] and the other is [Mathematical Physics: A Modern Introduction to Its Foundations] for the advanced undergraduate / grad student. I'm a sophomore undergrad and I have taken up the standard calculus sequence (~3sems) and ODEs. I want to self study ahead in mathematics...

Similar threads

Replies
1
Views
4K
Replies
1
Views
2K
Replies
9
Views
4K
Replies
10
Views
774
Replies
5
Views
9K
Replies
13
Views
5K
Replies
14
Views
3K
Replies
2
Views
2K
Replies
11
Views
2K
Replies
11
Views
4K
Back
Top