Why are curves in the plane of the form R -> R^2?

  • Thread starter Thread starter Simfish
  • Start date Start date
  • Tags Tags
    domains
Click For Summary
Curves in the plane are represented as functions from R to R^2 because they are one-dimensional and can be defined by a single parameter, often the length along the curve. This parameterization allows for a straightforward mapping of real numbers to points in the plane. While it may seem intuitive to use two parameters for curves based on x and y coordinates, this would complicate the representation since the parameters would not be independent. In contrast, surfaces require two parameters, as seen with latitude and longitude for points on a sphere. Thus, the structure of curves necessitates the use of a single parameter mapping to maintain their one-dimensional nature.
Simfish
Gold Member
Messages
811
Reaction score
2
So here are some functions of the following types...

f: R -> R^2 (curves in the plane)
f: R -> R^3 (curves in space)
f: R^2 -> R (functions f(x,y) of 2 vars)
f: R^3 -> R: (functions f(x,y,z) of 3 vars)
f: R^2 -> R^2 (vector fields v(x,y) in the plane)

The question is - why are curves in the plane of the form R -> R^2? My intuition tells me R^2 -> R^2 (since after all, curves in the plane are based on x and y coordinates...). And R^2 is a cartesian product of two sets. For any curve, I'd expect x AND y input values...
 
Physics news on Phys.org
Simfish said:
The question is - why are curves in the plane of the form R -> R^2? My intuition tells me R^2 -> R^2 (since after all, curves in the plane are based on x and y coordinates...). And R^2 is a cartesian product of two sets. For any curve, I'd expect x AND y input values...

Hi simfish! :smile:

Because a curve can be defined by one parameter - it's one-dimensional.

The parameter could be length, or angle, or anything convenient.

Usually, it's the length, s.

Then f(s) is the position (on a plane or in space) of the point whose distance along the curve is s.

So f maps the real numbers (R) into the plane or space.

You could use two parameters, but they wouldn't be independent.

Essentially, using (x,y) to define a curve in R2 would be using a function from s to (x,y) and then from (x,y) to R2! :frown:

A surface is two-dimensional, and needs two parameters. For example, points on a sphere are specified by latitude and longitude, so the "function for a sphere" in space would be a map from R2 to R3, specifying a point (x,y,z) for every point (theta,phi).
 

Similar threads

Replies
6
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K