Why Are Eigenvectors with Complex Eigenvalues Linearly Independent?

Click For Summary
For a matrix A with real entries and a complex eigenvalue λ=α+iβ (where β ≠ 0), the eigenvector Y0 can be expressed as Y0=Y1+iY2, with Y1 and Y2 being real vectors. To show that Y1 and Y2 are linearly independent, assume they are dependent, leading to Y2=kY1 for some constant k. Substituting this into the eigenvalue equations results in contradictions, particularly because the imaginary part must vanish, which cannot happen if β ≠ 0. Thus, Y1 and Y2 must be linearly independent. This conclusion reinforces the property of eigenvectors associated with complex eigenvalues.
Dusty912
Messages
149
Reaction score
1

Homework Statement


Suppose the matrix A with real entries has the complex eigenvalue λ=α+iβ, β does not equal 0. Let Y0 be an eigenvector for λ and write Y0=Y1 +iY2 , where Y1 =(x1, y1) and Y2 =(x2, y2) have real entries. Show that Y1 and Y2 are linearly independent.
[Hint: Suppose they are not linearly independent. Then (x2, y2)=k(x1, y1[/SUB) for some constant k. Then Y0=(1+ik)Y1. Then use the fact that Y0 is an eigenvector of A and that AY1 contains no imaginary part.

Homework Equations


AY=λY

The Attempt at a Solution


Honestly, not too sure where to start for this one. I know I should begin by considering the scenario where Y1 and Y2 are not linearly independent, but I do not know where I should begin with this information. Thanks for your help :)
 
Physics news on Phys.org
Dusty912 said:

Homework Statement


Suppose the matrix A with real entries has the complex eigenvalue λ=α+iβ, β does not equal 0. Let Y0 be an eigenvector for λ and write Y0=Y1 +iY2 , where Y1 =(x1, y1) and Y2 =(x2, y2) have real entries. Show that Y1 and Y2 are linearly independent.
[Hint: Suppose they are not linearly independent. Then (x2, y2)=k(x1, y1[/SUB) for some constant k. Then Y0=(1+ik)Y1. Then use the fact that Y0 is an eigenvector of A and that AY1 contains no imaginary part.

Homework Equations


AY=λY

The Attempt at a Solution


Honestly, not too sure where to start for this one. I know I should begin by considering the scenario where Y1 and Y2 are not linearly independent, but I do not know where I should begin with this information. Thanks for your help :)
You have ##A Y_0 = \lambda Y_0##, ##\lambda = \alpha +i \beta## and ##Y_0= Y_1+iY_2##.
Start by expressing ##A Y_0 = \lambda Y_0## in terms of the real numbers ##\alpha, \beta## and the real vectors ##Y_1, Y_2##.
 
okay so I would have A(Y1 + iY2)=(α+iβ)(Y1 + iY2)
and then I suppose I would multiply this out
 
Dusty912 said:
okay so I would have A(Y1 + iY2)=(α+iβ)(Y1 + iY2)
and then I suppose I would multiply this out
Yes, do that. Remember that ##A, Y_1, Y_2, \alpha, \beta## are all real. This will give you two equations (by setting the real and imaginary parts of the resulting equation equal to each other).
Then assume that ##Y_1, Y_2## are linearly dependent, and see what that gives. At this stage, remember that ##\beta \neq 0##.

(Or you could reverse the order, first assume that ##Y_1, Y_2## are linearly dependent, and then do the multiplication.)
 
Last edited:
okay so the two equations I get (by setting the real and imaginary parts of the resulting equation equal to each other) is:
AiY2= iβY1 +αiY2 and AY1Y1Y2

but now what from here?
 
Dusty912 said:
okay so the two equations I get (by setting the real and imaginary parts of the resulting equation equal to each other) is:
AiY2= iβY1 +αiY2 and AY1Y1Y2

but now what from here?
So you have ##AY_2=\beta Y_1 +\alpha Y_2##, ##AY_1=\alpha Y_1 - \beta Y_2## (*).

You want to prove that ##Y_1, Y_2## are linearly independent.
Assume that they are linearly dependent: that means that ##\exists k \in \mathbb R, k\neq 0## such that ##Y_1=k Y_2##.
Plug this in into the equations (*).
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K