- #1
Telemachus
- 835
- 30
Hi there. The question I wanted to ask is: Why are matrix methods so widely used for numerical solution of partial differential equations?
Many times I've found that storing a whole matrix requires much more memory than just doing an iteration scheme to propagate the solution. Sometimes I think it is easier to deal with boundary conditions in matrix form, specially in second order differential equations. But sometimes storing a matrix in a program requires to store a lot of elements that are zero. What I want to know is if there is any advantage to parallelize a program when the system of equations are written in matrix form, or if there is any other reason why matrix methods are so widely used.
Thanks in advance.
Many times I've found that storing a whole matrix requires much more memory than just doing an iteration scheme to propagate the solution. Sometimes I think it is easier to deal with boundary conditions in matrix form, specially in second order differential equations. But sometimes storing a matrix in a program requires to store a lot of elements that are zero. What I want to know is if there is any advantage to parallelize a program when the system of equations are written in matrix form, or if there is any other reason why matrix methods are so widely used.
Thanks in advance.