A Why are open strings vectors or scalars, or massive?

Maurice7510
Messages
52
Reaction score
0
In string theory, if we have NN BCs along ##X^i, i = 1, \ldots, n-1##
and DD BCs along ##X^a, a = n, \ldots, 25## then you get, from ##\alpha^{i,a}_{-1}|0,p\rangle ##, ##n## massless vectors and ##24-n## massless scalars. I understand that for the first excited level, ##M^2=0## and so we have no mass, but what suggests that these are scalars or vectors? In the case where we have two branes separated by a distance ##\delta##, with find ##M^2\propto\delta^2## which, in addition to the vector/scalar nature of the excitations, I don't understand.
 
Physics news on Phys.org
Their tensorial nature is determined by the index of the creation operator, no?
 
I'm not sure how that would be the case though; the indices on the creation operator are ##i## (or ##a##) and ##-1##. The lower index is the state number (i.e. ##\alpha_{-1}## creates a one particle state) and the upper indicates indicate whether the BCs are NN or DD.
 
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...

Similar threads

Back
Top