AndreasC said:
Coming up with detailed mathematical models is a waste of time when your model is completely off base.
A model is just a way to formalize your ideas.
Creating a model allows you to call things theorems, based on the axioms (i.e. assumptions).
There is no loss in generality by creating a model, unless you assume the existence of some type of object / property which hasn't been made rigorous in the language of mathematics, but I assume, with things like stochastic calculus there won't be many things like this.
Ultimately the main limitation with a financial model will be on the influence of real time events, which are in general hard to predict (something like an Elon Musk tweet can influence, and has influenced before, Tesla's stock prices).
AndreasC said:
Physics is not quite the same, because there quantitative mathematical models are very applicable. However, the full weight of MODERN mathematical formalism would only weigh down most areas of physics.
I get that for the development of physics creating a model with rapidly changing beliefs / assumptions is not a good thing. What I argue is that for topics in physics which have been explored really well, and that do in fact have faithful models, I argue that introducing one of those models can be a good thing, specially when the people you're exposing the material to study math.
AndreasC said:
ie mathematics should steer a bit closer to physics as well. After all, that is how it developed historically, and still does to a certain extent. The modern standards of "rigor" would never have happened of there weren't the older, far less rigorous "classical" mathematics, and those mathematics would never have developed had there not arisen many questions from physics, questions which in turn could never have developed had physics waited for the final link in the chain!
Mathematics has become independent of Physics, topics that are closest to my heart, i.e. something like abstract algebra, Galois theory, representation theory, and to some extent category theory, wouldn't really gain anything by steering into Physics specifically (there are a things that can be motivated by Physics like studying the Heisenberg groups, but the theory itself doesn't really evolve by steering into Physics. In fact Physics isn't special in this aspect, a lot of branches of mathematics are influenced by other Sciences like game theory & Biology and PDEs & Chemistry).
The modern mathematician is probably less restricted to rigor than you might believe. Somewhat counterintuitively for new topics, you often look at a property some things satisfy and then write definitions based on constraints you needed to arrive at that, which ultimately become theorems. That is to say, the theorem in new areas often predates the definition. Or if you'd like, the definitions are motivated by the theorems, and often evolved over time.
When the theory becomes sufficiently well studied the first textbooks are written about it.
There are also experimental mathematical magazines, which expose patterns & possibly corresponding conjectures to "fit" those patterns.