Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Why are QM wave functions complex?

  1. Apr 7, 2013 #1
    Hi,

    Can anyone explain to me why the wave functions in QM must to be complex, other than to make it work when inserted into the Schrodinger equation?
     
  2. jcsd
  3. Apr 7, 2013 #2

    f95toli

    User Avatar
    Science Advisor
    Gold Member

    Because the both the amplitude AND the phase of the wavefunction matters, and the best way to "encode" both amplitude and phase in QM (and in for example electromagnetics) is to use complex quantities.

    If the wavefunction was not complex you could e.g. never get interference.
     
  4. Apr 7, 2013 #3
    Hi f95toli

    Thanks for that and I do understand what you mean. However, it is possible in electromagnetism to describe all the properties of waves, interference included, by superposing sine or cosine waves of different amplitudes - without the need for complex functions. It is true one can represent these EM waves (or any other), by using the relation e^ix = cos x + i sin x but it is for convenience. And the phase can be included in the sine or complex forms. So you do not need a complex wavefunction for interference. There must be an additional reason for complex functions in QM.
     
  5. Apr 7, 2013 #4
    Actually, real wave functions can be sufficient, at least in some very general and important cases. For example, the scalar wave function can be made real by a gauge transform (at least locally) in the Klein-Gordon equation in electromagnetic field (Schroedinger, Nature, v.169, p.538(1952)). A real wave function can also be sufficient for the Dirac equation in electromagnetic field: three out of four components of the spinor wave function can be algebraically eliminated from the Dirac equation, and the remaining component can be made real by a gauge transform (at least locally) (please see my article in J. Math. Phys.: http://akhmeteli.org/wp-content/uploads/2011/08/JMAPAQ528082303_1.pdf ).
     
  6. Apr 7, 2013 #5
    Complex numbers are part of a larger collection of hypercomplex numbers. These include, but not limited to, real numbers, complex numbers, quaternion numbers, and octonion numbers. Each of these types of numbers have their own algebraic properties. They are members of the division algebras. The reals have the algebraic properties of having magnitude, commutativity, and associativity. The complex numbers lose the property of magnitude; which is bigger 1 or i? But the complex numbers are still commutative and associative. Then the quaternions lose the algebraic propertes of magnitude and commutativity, but still have associativity. And the octonions lose magnitude, commutativity, and associativity.

    I contend that the only justification for using complex numbers in quantum mechanics is because the wavefunctions have the algebraic property of complex numbers, meaning the wavefunctions lose the ability to be compared in magnitude with each other but are still commutative and associative.

    The Schrodinger equation is a formalism that deals with one wavefunction at a time, so no comparison between the magnitude is obvious between many wavefunctions. However, in the formalism of Feynman's path integral, an infinite number of wavefunctions are presented in the construction of the path integral. In this context one can ask which wavefunction is larger than another.

    As I understand it, wavefunctions are distributions that are all normalized to one. So how does one compare the magnitude of one distribution with another? In this context it would seem obvious that wavefunctions lose the algebraic property of comparing magnitude and so they can be represented with complex numbers.
     
  7. Apr 7, 2013 #6

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    Magnitude is really a bad term to use in this case. Both the real and the complex numbers can be normed, so maginute makes sense.
    What you mean is that complex numbers are not an ordered field, while the real numbers are.
     
  8. Apr 7, 2013 #7
    I don't have a source for this, but I remember reading somewhere that Dirac said complex numbers were need for QM because we reduced the number of independent components of phase space (position and momentum), by being able to write momentum as the derivative w.r.t. position (and visa versa) and hence lost part of the two degrees of freedom. We can get that back by switching to complex numbers which come with two independent components. But this is just a vague memory that I haven't tried to dissect.
     
  9. Apr 7, 2013 #8
    The number of parameters needed to describe a mixed state should be the multiple of the parameters to describe each separate state. The goldilocks answer is that with real numbers the left hand side is too big, with quarternions the left hand side is too small, and with complex numbers...it is just right.
     
  10. Apr 7, 2013 #9
    That's a very concise way to put it. I was about to drown him in Hilbert spaces :P
     
  11. Apr 7, 2013 #10
    with complex numbers, derive exp(iwt) or something like that is just multiplying by iw (i=sqr(-1)). its easy.

    you can write the wave function as a sum of exponential terms (fourier t.) so it works for any wave.
     
  12. Apr 8, 2013 #11
    Thanks to all who have taken the time to reply. I understand that the complex form of describing a wave makes it easier (sometimes) to manipulate mathematically and that we just take either the Re or Im part when dealing with real waves. However, that doesn't explain why the texts on QM insist that the wavefunction be complex. I am afraid the explanations offered by freind and akhmeteli were in parts, beyond my level of mathematical understanding, which is B.Sc Physics level - not postgraduate. Although I do get what friend was saying about comparing magnitudes but then how can a wavefunction formed from any superposition of other wavefunctions also have unit magnitude?

    So, I am still wondering is there an explanation which doesn't require higher level mathematics?
     
  13. Apr 8, 2013 #12

    Vanadium 50

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    You have a choice. You can either express this as a single complex differential equation, or a coupled set of four real differential equations (the real part, the imaginary part, and the two Cauchy-Riemann conditions). These are mathematically equivalent ways to express the same underlying physics.

    As a practical matter, it is much easier to work with the single complex equation.
     
  14. Apr 8, 2013 #13

    atyy

    User Avatar
    Science Advisor

    Last edited: Apr 8, 2013
  15. Apr 8, 2013 #14

    bhobba

    User Avatar
    Science Advisor
    Gold Member

    Actually that question is a very deep one. One answer is suppose you have some kind of measurement apparatus represented by some observable. Rotate or shift the apparatus by an infinitesimal amount and the requirement that the new states that are now the measurement outcomes are still orthogonal and superposition's should still be superposition's means the underlying vector space is transformed by an infinitesimal unitary operator of the form A = 1 +eU where e is an infinitesimal real number. AA(bar) = 1 = 1 + eU + eU(bar) which implies U(bar) = -U so that U is pure imaginary which of course means the underlying vector space must be complex. Other possibilities such as quaternoins have this property but the simplest are complex numbers.

    But probably the deepest answer is that a few reasonable assumptions leads to basically two choices - standard probability theory and QM:
    http://arxiv.org/pdf/0911.0695v1.pdf

    What QM allows is pure states to continuously change to other pure states and entanglement. If you want either of those then you must use QM and complex numbers. Note that continuity is really the basis of the first augment I gave.

    Thanks
    Bill
     
  16. Apr 9, 2013 #15
    Thanks to all who have taken the time to reply. I understand that the complex form of describing a wave makes it easier (sometimes) to manipulate mathematically and that we just take either the Re or Im part when dealing with real waves. However, that doesn't explain why the texts on QM insist that the wavefunction be complex. I am afraid the explanations offered by freind and akhmeteli were in parts, beyond my level of mathematical understanding, which is B.Sc Physics level - not postgraduate. Although I do get what friend was saying about comparing magnitudes but then how can a wavefunction formed from any superposition of other wavefunctions also have unit magnitude?

    From the latest responses, I guess not!

    However, using the generic form of the wave function, psi = e^-i(wt - kx) and linking the operators for Energy and Momentum, one automatically gets the Schrodinger equation, including the ih term, which is complex. So, I think my initial comment is valid. The Schroinger eqation is complex because we assume a complex form for the wavefunction and vice-versa.
     
  17. Apr 9, 2013 #16

    bhobba

    User Avatar
    Science Advisor
    Gold Member

    I feel for you - I really do. Trouble is if there was an answer that required less modest mathematical background books at a less advanced level would give it. That's part of the reason its a deep and far from trivial issue. For now simply accept there is a reason and when you know a bit more math you can delve into the detail. After all you need a reason to put yourself through that heavy math stuff.

    Thanks
    Bill
     
  18. Apr 9, 2013 #17

    DrDu

    User Avatar
    Science Advisor

    I think it implies that U is anti-hermitian. However U may still be representable in a suitable basis as a real matrix, e.g. ## U=i\sigma_y## with ##\sigma_y## being a Pauli matrix.

    I rather think the reason we use complex vector spaces is to represent time reversal symmetry without sacrificing energy spectrum to be bounded from below. However I don't remember the details.
     
  19. Apr 9, 2013 #18

    bhobba

    User Avatar
    Science Advisor
    Gold Member

    Anti-Hermitian, Skew-Hermitian, Skew-Adjoint or Pure-Imaginary - same thing.

    The terminology comes from being able to break any operator into the form A + iB where A and B are Hermitian. You are correct about the Pauli matrices so I would say suggests rather than proves.

    Thanks
    Bill
     
    Last edited: Apr 9, 2013
  20. Apr 9, 2013 #19
    Let me try to rephrase what I said.

    In quantum theory, if you start with a (scalar) wave function [itex]\psi[/itex] and electromagnetic four-potential [itex]A_\mu[/itex], you can use gauge invariance to get a physically equivalent solution [itex]\varphi[/itex] and [itex]B_\mu[/itex], if [itex]\varphi(x)=\exp(i\theta(x))\psi(x)[/itex] and [itex]B_\mu(x)=A_\mu(x)-\frac{1}{e}\partial_\mu\theta(x)[/itex], where [itex]\theta(x)[/itex] is an arbitrary real function (I am cutting some corners here). So it is pretty obvious that you can always choose [itex]\theta(x)[/itex] in such a way that [itex]\varphi(x)[/itex] is real. So you can do with real wave functions only.
     
  21. Apr 10, 2013 #20
    What about the spin wavefunction for a spin-1/2 particle?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Why are QM wave functions complex?
  1. Why the wave function (Replies: 51)

Loading...