A Why are the eigenvectors of this hermitian matrix not orthogonal?

rghurst
Messages
7
Reaction score
0
TL;DR
I am unable to show that the eigenvectors are orthogonal.
Why are the eigenvectors of this hermitian matrix not checking out as orthogonal? The eigenvalues are certainly distinct. ChatGPT also is miscalculating repeatedly. I have checked my work many times and cannot find the error. Kindly assist.
 

Attachments

  • Hermitian.png
    Hermitian.png
    33.7 KB · Views: 59
Physics news on Phys.org
rghurst said:
TL;DR Summary: I am unable to show that the eigenvectors are orthogonal.

Why are the eigenvectors of this hermitian matrix not checking out as orthogonal? The eigenvalues are certainly distinct. ChatGPT also is miscalculating repeatedly. I have checked my work many times and cannot find the error. Kindly assist.
Don't rely on ChatGPT and please repost your calculation attempt in LaTeX so it's readable and quotable.
 
  • Like
Likes berkeman
Thread closed for Moderation.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...