Why Capacitors in Parallels vs. Series: Coaxial Capacitor Case

Click For Summary
The discussion centers on the configuration of two capacitors—one filled with vacuum and the other with a dielectric material—within a coaxial setup. Initial calculations suggested a series arrangement, but the resulting capacitance equation did not align with expected outcomes, particularly when one capacitor's length was set to zero. Upon recalculating, the parallel configuration yielded results that matched expectations, confirming that both capacitors share the same potential difference. The reasoning is that since each metal tube is an equipotential, this leads to a parallel combination rather than a series one. The conclusion emphasizes the importance of understanding potential differences in capacitor configurations.
PhysicsRock
Messages
121
Reaction score
19
Homework Statement
A cylindrical capacitor is made off of two coaxial metal tubes. Here, ##r_1## refers to the outer radius of the inner tube and ##r_2## the inner radius of the outer tube. Both metal pieces have a length of ##l##. Between the two pipes, a glass tube is inserted from one side, a distance ##a## (##0 \leq a \leq l##) into the capacitor (filling the gap entirely). It's relative permittivity is ##\varepsilon_r > 1##. Calculate the capacitance of the contraption as a function of ##a##.
Relevant Equations
Capacitance of a cylindrial capacitor ##\displaystyle C = \frac{2 \pi \varepsilon_0 L}{\displaystyle \ln\left( \frac{r_2}{r_1} \right)}##.
So my idea was to separate the capacitor into two individual ones, one of length ##l - a## filled with a vacuum and one of length ##a## filled with the glass tube. The capacitances then are

$$
C_0 = \frac{2 \pi \varepsilon_0 (l-a)}{\displaystyle \ln\left( \frac{r_2}{r_1} \right)}
$$

for the vacuum capacitor, and

$$
C_1 = \frac{2 \pi \varepsilon_0 \varepsilon_r a}{\displaystyle \ln\left( \frac{r_2}{r_1} \right)}
$$

for the capacitor with the dielectric. Originally, I thought they must be in series, however, doing the math, the overall capacitance for that case would be

$$
C = \frac{2 \pi \varepsilon_0 \varepsilon_r (l-a) a}{l + a (\varepsilon_r - 1)} \frac{1}{\displaystyle \ln\left( \frac{r_2}{r_1} \right)}.
$$

This, however, doesn't make any sense. For example, when plugging in ##a = 0##, what one would expect is that the capacitance is equal to that of one cylindrical capacitor of length ##l## filled entirely with a vacuum. According to the above expression though, it would be zero.

So I tried calculating the capacitance for them being in parallel and I get

$$
C = \frac{2 \pi \varepsilon_0}{\displaystyle \ln\left( \frac{r_2}{r_1} \right)} [ l + a (\varepsilon_r - 1) ]
$$

which does satisfy all expectations, for example for the scenario discussed above. This leads to the conclusion that the capacitors must in fact be placed in parallel. However, I don't understand why, since typically for such problems the separated capacitors are always in series. Can any of you explain to me why this is the case here?

Thank you.
 
Physics news on Phys.org
Each of the metal tubes is an equipotential. This means that the potential difference across the vacuum capacitor is the same as the potential difference across the glass capacitor. Two capacitors that have the same potential difference across them form a parallel combination.
 
kuruman said:
Each of the metal tubes is an equipotential. This means that the potential difference across the vacuum capacitor is the same as the potential difference across the glass capacitor. Two capacitors that have the same potential difference across them form a parallel combination.
Thank you. That makes total sense.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
5
Views
569
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K