Why Capacitors in Parallels vs. Series: Coaxial Capacitor Case

Click For Summary
SUMMARY

The discussion centers on the configuration of capacitors in a coaxial capacitor case, specifically analyzing the placement of a vacuum-filled capacitor and a glass-filled capacitor. The calculations reveal that when placed in parallel, the overall capacitance is given by the formula C = (2 π ε₀ / ln(r₂/r₁)) [l + a (εᵣ - 1)], which aligns with expected outcomes. In contrast, a series configuration leads to an illogical result of zero capacitance when one capacitor's length approaches zero. The conclusion is that the capacitors must be arranged in parallel due to their shared potential difference.

PREREQUISITES
  • Understanding of coaxial capacitor theory
  • Familiarity with capacitance formulas and dielectric materials
  • Knowledge of equipotential surfaces in electrical circuits
  • Basic calculus for manipulating logarithmic expressions
NEXT STEPS
  • Study the derivation of coaxial capacitor capacitance formulas
  • Explore the effects of different dielectric materials on capacitance
  • Learn about equipotential surfaces and their implications in circuit design
  • Investigate series vs. parallel capacitor configurations in various applications
USEFUL FOR

Electrical engineers, physics students, and anyone involved in capacitor design or analysis will benefit from this discussion, particularly those interested in the behavior of capacitors in complex configurations.

PhysicsRock
Messages
121
Reaction score
19
Homework Statement
A cylindrical capacitor is made off of two coaxial metal tubes. Here, ##r_1## refers to the outer radius of the inner tube and ##r_2## the inner radius of the outer tube. Both metal pieces have a length of ##l##. Between the two pipes, a glass tube is inserted from one side, a distance ##a## (##0 \leq a \leq l##) into the capacitor (filling the gap entirely). It's relative permittivity is ##\varepsilon_r > 1##. Calculate the capacitance of the contraption as a function of ##a##.
Relevant Equations
Capacitance of a cylindrial capacitor ##\displaystyle C = \frac{2 \pi \varepsilon_0 L}{\displaystyle \ln\left( \frac{r_2}{r_1} \right)}##.
So my idea was to separate the capacitor into two individual ones, one of length ##l - a## filled with a vacuum and one of length ##a## filled with the glass tube. The capacitances then are

$$
C_0 = \frac{2 \pi \varepsilon_0 (l-a)}{\displaystyle \ln\left( \frac{r_2}{r_1} \right)}
$$

for the vacuum capacitor, and

$$
C_1 = \frac{2 \pi \varepsilon_0 \varepsilon_r a}{\displaystyle \ln\left( \frac{r_2}{r_1} \right)}
$$

for the capacitor with the dielectric. Originally, I thought they must be in series, however, doing the math, the overall capacitance for that case would be

$$
C = \frac{2 \pi \varepsilon_0 \varepsilon_r (l-a) a}{l + a (\varepsilon_r - 1)} \frac{1}{\displaystyle \ln\left( \frac{r_2}{r_1} \right)}.
$$

This, however, doesn't make any sense. For example, when plugging in ##a = 0##, what one would expect is that the capacitance is equal to that of one cylindrical capacitor of length ##l## filled entirely with a vacuum. According to the above expression though, it would be zero.

So I tried calculating the capacitance for them being in parallel and I get

$$
C = \frac{2 \pi \varepsilon_0}{\displaystyle \ln\left( \frac{r_2}{r_1} \right)} [ l + a (\varepsilon_r - 1) ]
$$

which does satisfy all expectations, for example for the scenario discussed above. This leads to the conclusion that the capacitors must in fact be placed in parallel. However, I don't understand why, since typically for such problems the separated capacitors are always in series. Can any of you explain to me why this is the case here?

Thank you.
 
Physics news on Phys.org
Each of the metal tubes is an equipotential. This means that the potential difference across the vacuum capacitor is the same as the potential difference across the glass capacitor. Two capacitors that have the same potential difference across them form a parallel combination.
 
kuruman said:
Each of the metal tubes is an equipotential. This means that the potential difference across the vacuum capacitor is the same as the potential difference across the glass capacitor. Two capacitors that have the same potential difference across them form a parallel combination.
Thank you. That makes total sense.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
5
Views
696
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K