Why do wind turbines pitch their blades?

AI Thread Summary
Wind turbines pitch their blades to optimize performance and prevent structural failure during high winds. Simply increasing the generator size is not economically viable, as it would require significant structural changes to handle the additional stresses. The design of turbines is based on expected wind conditions, and larger generators would only be beneficial during rare high-wind events. Additionally, wind turbines typically have a low capacity factor, indicating they do not operate at peak efficiency consistently. Understanding these factors clarifies the importance of blade pitching in maintaining turbine integrity and efficiency.
Ian231
Messages
3
Reaction score
2
TL;DR Summary
Wind turbines seem to pitch their blades to protect the generator. Why don't they get a bigger generator instead?
Hi all.

I'm new to this forum and to wind turbine technology in general, and I watched one of these one-minute videos explaining why wind turbines pitch their blades but it doesn not make sense to me. Why don't you just get a bigger generator? You'd get more energy for the same blades, same tower, same location, etc. Or am I missing something?

Here's the video, in case my explanation does not make sense.



Thanks,
Ian
 
Engineering news on Phys.org
Optimization. Turbines are designed to work with the expected wind, using larger generator that would be used just for few days a year is not economically viable.
 
  • Like
Likes Astronuc, Ian231 and russ_watters
Your comment makes it sound like you are focused on what is called "feathering" of the blades when the wind is too strong.

You are correct that putting on a bigger generator might keep the speed down even when the wind is strong. However there are other stresses and forces that increase with more wind and more power generated. The short answer is that something may break -- structural failure.

Even things that don't rotate at all get blown down by strong winds.
 
  • Like
Likes Astronuc, Ian231 and russ_watters
anorlunda said:
Your comment makes it sound like you are focused on what is called "feathering" of the blades when the wind is too strong.

You are correct that putting on a bigger generator might keep the speed down even when the wind is strong. However there are other stresses and forces that increase with more wind and more power generated. The short answer is that something may break -- structural failure.

Even things that don't rotate at all get blown down by strong winds.
So, if I understood you correctly, my 'same blades, same tower' was actually wrong: you could get more energy by putting a bigger generator, but you'd need to change the structure so it can handle higher stresses and forces. Did I get it right?
 
Borek said:
Optimization. Turbines are designed to work with the expected wind, using larger generator that would be used just for few days a year is not economically viable.
Ok, that's quite interesting. I guess wind turbines do have a quite low capacity factor, which (if I undersand correctly) shows that they don't operate at the designed wind speed that often
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top