sankalpmittal
- 785
- 27
sophiecentaur said:One simple way to demonstrate your inappropriate use of KE in the context of levers is to consider a simple 2:1 length lever with balanced masses (Ratio 1:2). If you allow some movement (say the large mass moves downwards) and do some simple calculation for the KE of each mass, you find that the smaller mass will have TWICE the KE of the larger mass. The velocity will be twice and the mass is half, so the mv2/2 is NOT the same in each case. So, although we have done a calculation involving this lever, it really doesn't lead to any useful conclusion and definitely not an equation that is of any use for solving a 'balance' problem. There is some other form of Energy which would need to be considered as well.
Another nail in the coffin is to consider Friction. When you turn a wrench against a very sticky thread, your hand / body may have some kinetic energy but what is moving on the other implied end of the lever? A nut, with a mass of just a few grams, rotating very slowly. Any energy that you may be putting into the system is not turning up as identifiable Kinetic Energy (there will be some KE in the form of internal energy - heat - but this is outside of your analysis and doesn't count). Work has been done but KE is not relevant - or only a tiny part of the situation.
I am glad that you pointed out the mistake.
I found that kinetic energy of load arm was not equal to kinetic energy of effort arm.
*Sigh* , this proves that I applied wrong concepts !
Thanks !
jambaugh said:On this, slightly. The force moment is as you say a torque a generalized force. It does not imply kinetic energy when there is no rotational motion. One note as to why torque and energy have the same units, since a generalized force is work done per generalized motion if the units of that motion are pure numbers (as with radians) then the units of force will equate to units of energy. Technically though there is a distinction. As said, force is not work. The proper units of torque would be e.g. Newton-meters per radian = Joules per radian.
If one wants to get super technical, mathematically a torque (or other gen. force) differs from work in that it is a linear operator mapping differentials in one coordinate to differentials in another not a stand alone quantity. You see that in the way force is measured, you have to do a little bit of work over a little bit of displacement to see the ratio. Look explicitly at how a scale or a torque meter works. (or a volt meter, or a pressure meter...)
Thanks for this detailed explanation. This clarifies hell lot of things.
Yet I cannot find answer to OP's question. He wants to analyze molecular interactions ? In other words , I think he is looking for theoretical reasoning rather than mathematical deductions.
I guess I have the answer but this involves considering of mass of lever. I searched , googled etc. but cannot find answer to his question.
Here is my answer ( please correct if wrong) :
We know that centre of gravity is the point where total weight of body is supposed to act.
Let one arm of lever be longer and other be shorter. Then its quite obvious that total weight downward equals sum total of weight of all the atoms downward. So if one side arm is greater than other , then at that side already there are more atoms and hence greater downward weight. So we apply less additional weight for the both side to be in equilibrium.
Also centre of gravity will be at midpoint of lever and hence will dominate at side which has greater lever arm.
But we assume mass of lever to be massless , do we not ?
Am I correct ?