I Why does mechanical energy of a damped oscillator not vary with spring constant?

AI Thread Summary
The mechanical energy of a damped oscillator is influenced by the spring constant, as indicated by the equation 1/2 x k x xm x e^-bt/m. However, the rate of decay of mechanical energy does not depend on the spring constant, but rather on the damping constant and mass ratio (b/m). A discussion references Halliday and Resnick's Chapter 15, which clarifies that the percentage change of energy over time is what is being considered, not the absolute variation with the spring constant. The confusion arises from interpreting the initial energy and its relation to the decay rate. Ultimately, the key takeaway is that while the spring constant is part of the energy equation, it does not affect the rate at which energy decreases in a damped oscillator.
MenchiKatsu
Messages
14
Reaction score
2
I mean its part of the equation. 1/2 x k x xm x e^-bt/m for mechanical energy
 
Physics news on Phys.org
The mechanical energy of a damped oscillator does depend on the spring constant. What makes you think it doesn’t?
 
MenchiKatsu said:
I mean its part of the equation. 1/2 x k x xm x e^-bt/m for mechanical energy
What equation? I see no such thing.
 
Here are three sets of values for the spring constant, damping constant, and mass for the damped oscillator of Fig. 15-16. Rank the sets according to the time re-quired for the mechanical energy to decrease to one-fourth of its initial value, greatest first.
This is from halliday and resnick chapter 15. Checkpoint 6. The answer says it doesn't depend on spring constant.
 
Note that they carefully ask about the percentage change of energy over time. They are not saying, as you claim thay are, that

"mechanical energy of a damped oscillator not vary with spring constant"

 
MenchiKatsu said:
Here are three sets of values for the spring constant, damping constant, and mass for the damped oscillator of Fig. 15-16.
Where are they? What does Fig. 15-16 show?
 
Here it is
 

Attachments

  • Screenshot_20250226-064614_ReadEra.jpg
    Screenshot_20250226-064614_ReadEra.jpg
    23 KB · Views: 31
  • Screenshot_20250226-064943_ReadEra.jpg
    Screenshot_20250226-064943_ReadEra.jpg
    10.7 KB · Views: 27
Rate of decay (λ) depends on the b/m relation. You are confused about the value of the initial energy, which is:
1740609224128.png

and the equation of energy in terms of time t:
1740609257688.png


edit: deleted some part of the reply due I provided the entire solution
 
Last edited:

Similar threads

Back
Top