Astudious said:
Do coupling constants and shifts in general depend on temperature, or is it just relaxation time?
Chemical shift is dependent on the electronic environment around the nucleus, so if that changes with temperature, then the chemical shift will change as well. If there's a temperature induced structural change in a material, the chemical shifts will change. In the case of PF
5, what's going on is a little more complicated, since at high temperatures the chemical shift is an average of equatorial and axial shifts. As for J-coupling, I'm not aware of any specific situation where this changes with temperature, but I don't want to say it can never happen.
Astudious said:
Wouldn't the protons have equivalent environment anyway due to symmetry?
They're only symmetric if there's a threefold symmetry axis in the overall molecule along the C-R bond leading out of the methyl group. As a really simple example, think about acetaldehyde. The methyl group can either have a proton aligned with the C=O (call it eclipsed) or tilted 60° from the C=O (call it staggered). (...or any angle in between, but let's keep it simple...) At room temperature, this methyl group rotates rapidly, so that, over the timescale of the experiment, the NMR can't distinguish which proton is which and gives a single line as an average of the protons' chemical environments. However, at some ridiculously low temperature where the rotation of the methyl group is much slower, the proton aligned with the C=O in the eclipsed conformation is going to have a different chemical environment from the other two protons on the methyl group; therefore its chemical shift will be different from the other two. In addition, in the staggered conformation, the antialigned proton will have a different chemical shift from the other two protons
and a different chemical shift from any of the protons in the eclipsed conformation, because the geometries are different. NB--the other two protons in each of these cases
will be equivalent to each other by symmetry, but of course that's an artifact of the plane of symmetry of the molecule. One can think of more complex situations where all three methyl protons are inequivalent when frozen.